Show simple item record

dc.contributor.authorChang, Hyun Sung
dc.contributor.authorWeiss, Yair
dc.contributor.authorFreeman, William T.
dc.date.accessioned2010-10-19T12:03:07Z
dc.date.available2010-10-19T12:03:07Z
dc.date.issued2010-02
dc.date.submitted2009-11
dc.identifier.isbn978-1-4244-5653-6
dc.identifier.isbn978-1-4244-5655-0
dc.identifier.issn1522-4880
dc.identifier.otherINSPEC Accession Number: 11151198
dc.identifier.urihttp://hdl.handle.net/1721.1/59395
dc.description.abstractThe theory of compressed sensing tells a dramatic story that sparse signals can be reconstructed near-perfectly from a small number of random measurements. However, recent work has found the story to be more complicated. For example, the projections based on principal component analysis work better than random projections for some images while the reverse is true for other images. Which feature of images makes such a distinction and what is the optimal set of projections for natural images? In this paper, we attempt to answer these questions with a novel formulation of compressed sensing. In particular, we find that bandwise random projections in which more projections are allocated to low spatial frequencies are near-optimal for natural images and demonstrate using experimental results that the bandwise random projections outperform other kinds of projections in image reconstruction.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (MURI Grant N00014-06-1-0734)en_US
dc.description.sponsorshipRoyal Dutch Shell plc (NGA NEGI-1582-04-0004)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICIP.2009.5414426en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIEEEen_US
dc.subjectuncertain component analysisen_US
dc.subjectnatural imagesen_US
dc.subjectinformative sensingen_US
dc.subjectCompressed sensingen_US
dc.titleInformative sensing of natural imagesen_US
dc.typeArticleen_US
dc.identifier.citationHyun Sung Chang, Y. Weiss, and W.T. Freeman. “Informative sensing of natural images.” Image Processing (ICIP), 2009 16th IEEE International Conference on. 2009. 3025-3028. © Copyright 2010 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverFreeman, William T.
dc.contributor.mitauthorChang, Hyun Sung
dc.contributor.mitauthorFreeman, William T.
dc.relation.journalProceedings of the 16th IEEE International Conference on Image Processing (ICIP 2009)en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsChang, Hyun Sung; Weiss, Yair; Freeman, William T.en
dc.identifier.orcidhttps://orcid.org/0000-0002-2231-7995
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record