MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Minimalistic Control of a Compass Gait Robot in Rough Terrain

Author(s)
Iida, Fumiya; Tedrake, Russell Louis
Thumbnail
DownloadIida-2009-Minimalistic Control of a Compass Gait Robot in Rough Terrain.pdf (649.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Although there has been an increasing interest in dynamic bipedal locomotion for significant improvement of energy efficiency and dexterity of mobile robots in the real world, their locomotion capabilities are still mostly restricted on flat surfaces. The difficulty of dynamic locomotion in rough terrain is mainly originated in the stability and controllability of gait patterns while exploiting the natural mechanical dynamics of the robots. For a systematic investigation of the challenging problem, this paper presents the simplest control architecture for the compass gait model which can be used for locomotion in rough terrain. Locomotion of the model is mainly achieved by an open-loop oscillator which induces self-stabilizing gait patterns, and we test the proposed control architecture in a real-world robotic platform. In addition, we also found that this controller is capable of varying stride length with a minimum change of control parameters, which enables locomotion in rough terrains. By using these basic principles of self-stability and gait variability, we extended the proposed controller with a simple sensory feedback about the location in the environment, which makes the robot possible to control gait patterns autonomously for traversing a rough terrain. We describe a set of experimental results and discuss how the proposed minimalistic control architecture can be enhanced for dynamic locomotion control in more complex environment.
Date issued
2009-08
URI
http://hdl.handle.net/1721.1/59402
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE International Conference on Robotics and Automation, 2009. ICRA '09.
Publisher
Institute of Electrical and Electronics Engineers
Citation
Iida, Fumiya, and Russ Tedrake. “Minimalistic control of a compass gait robot in rough terrain.” Robotics and Automation, 2009. ICRA '09. IEEE International Conference on. 2009. 1985-1990.
Version: Final published version
ISBN
978-1-4244-2788-8
ISSN
1050-4729

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.