MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Local graph partitions for approximation and testing

Author(s)
Hassidim, Avinatan; Kelner, Jonathan Adam; Nguyen, Huy N.; Onak, Krzysztof
Thumbnail
DownloadKelner-2009-Local graph partitions for approximation and testing.pdf (282.7Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We introduce a new tool for approximation and testing algorithms called partitioning oracles. We develop methods for constructing them for any class of bounded-degree graphs with an excluded minor, and in general, for any hyperfinite class of bounded-degree graphs. These oracles utilize only local computation to consistently answer queries about a global partition that breaks the graph into small connected components by removing only a small fraction of the edges. We illustrate the power of this technique by using it to extend and simplify a number of previous approximation and testing results for sparse graphs, as well as to provide new results that were unachievable with existing techniques. For instance:1. We give constant-time approximation algorithms for the size of the minimum vertex cover, the minimum dominating set, and the maximum independent set for any class of graphs with an excluded minor.2. We show a simple proof that any minor-closed graph property is testable in constant time in the bounded degree model.3. We prove that it is possible to approximate the distance to almost any hereditary property in any bounded degree hereditary families of graphs. Hereditary properties of interest include bipartiteness, k-colorability, and perfectness.
Date issued
2010-03
URI
http://hdl.handle.net/1721.1/59442
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
50th Annual IEEE Symposium on Foundations of Computer Science, 2009. FOCS '09
Publisher
Institute of Electrical and Electronics Engineers
Citation
Hassidim, A. et al. “Local Graph Partitions for Approximation and Testing.” Foundations of Computer Science, 2009. FOCS '09. 50th Annual IEEE Symposium on. 2009. 22-31. ©2010 Institute of Electrical and Electronics Engineers.
Version: Final published version
Other identifiers
INSPEC Accession Number: 11207160
ISBN
978-1-4244-5116-6
ISSN
0272-5428
Keywords
constant time algorithms, approximation algorithms, separator theorem

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.