Show simple item record

dc.contributor.authorHe, Ruijie
dc.contributor.authorBachrach, Abraham Galton
dc.contributor.authorRoy, Nicholas
dc.date.accessioned2010-11-02T16:18:18Z
dc.date.available2010-11-02T16:18:18Z
dc.date.issued2010-07
dc.date.submitted2010-05
dc.identifier.isbn978-1-4244-5038-1
dc.identifier.issn1050-4729
dc.identifier.otherINSPEC Accession Number: 11430981
dc.identifier.urihttp://hdl.handle.net/1721.1/59806
dc.description.abstractA helicopter agent has to plan trajectories to track multiple ground targets from the air. The agent has partial information of each target's pose, and must reason about its uncertainty of the targets' poses when planning subsequent actions. We present an online, forward-search algorithm for planning under uncertainty by representing the agent's belief of each target's pose as a multi-modal Gaussian belief. We exploit this parametric belief representation to directly compute the distribution of posterior beliefs after actions are taken. This analytic computation not only enables us to plan in problems with continuous observation spaces, but also allows the agent to search deeper by considering policies composed of multi-step action sequences; deeper searches better enable the agent to keep the targets well-localized. We present experimental results in simulation, as well as demonstrate the algorithm on an actual quadrotor helicopter tracking multiple vehicles on a road network constructed indoors.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant 0546467)en_US
dc.description.sponsorshipUnited States. Army Research Office (Collaborative Technology Alliances (CTA) and Micro Autonomous Systems and Technology (MAST) )en_US
dc.description.sponsorshipUnited States. Office of Naval Research (MURI Grant N00014-07-1-0749)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ROBOT.2010.5509548en_US
dc.rightsAttribution-Noncommercial-Share Alike 3.0 Unporteden_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceNicholas Roy via Barbara Williamsen_US
dc.titleEfficient Planning under Uncertainty for a Target-Tracking Micro-Aerial Vehicleen_US
dc.typeArticleen_US
dc.identifier.citationRuijie He, A. Bachrach, and N. Roy. “Efficient planning under uncertainty for a target-tracking micro-aerial vehicle.” Robotics and Automation (ICRA), 2010 IEEE International Conference on. 2010. 1-8.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverRoy, Nicholas
dc.contributor.mitauthorRoy, Nicholas
dc.contributor.mitauthorHe, Ruijie
dc.contributor.mitauthorBachrach, Abraham Galton
dc.relation.journalProceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA)en_US
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRuijie He; Bachrach, Abraham; Roy, Nicholasen
dc.identifier.orcidhttps://orcid.org/0000-0002-8293-0492
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record