Show simple item record

dc.contributor.authorTorralba, Antonio
dc.contributor.authorLiu, Ce
dc.contributor.authorYuen, Jenny
dc.date.accessioned2010-11-05T19:32:14Z
dc.date.available2010-11-05T19:32:14Z
dc.date.issued2009-08
dc.date.submitted2009-06
dc.identifier.isbn978-1-4244-3992-8
dc.identifier.issn1063-6919
dc.identifier.otherINSPEC Accession Number: 10836097
dc.identifier.urihttp://hdl.handle.net/1721.1/59843
dc.description.abstractIn this paper we propose a novel nonparametric approach for object recognition and scene parsing using dense scene alignment. Given an input image, we retrieve its best matches from a large database with annotated images using our modified, coarse-to-fine SIFT flow algorithm that aligns the structures within two images. Based on the dense scene correspondence obtained from the SIFT flow, our system warps the existing annotations, and integrates multiple cues in a Markov random field framework to segment and recognize the query image. Promising experimental results have been achieved by our nonparametric scene parsing system on a challenging database. Compared to existing object recognition approaches that require training for each object category, our system is easy to implement, has few parameters, and embeds contextual information naturally in the retrieval/alignment procedure.en_US
dc.description.sponsorshipRoyal Dutch/Shell Groupen_US
dc.description.sponsorshipUnited States. National Geospatial-Intelligence Agency (NEGI-1582-04-0004)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (MURI Grant N00014-06-1-0734)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) ((NSF Career award (IIS 0747120))en_US
dc.description.sponsorshipNational Defense Science and Engineering Graduate Fellowshipen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CVPRW.2009.5206536en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIEEEen_US
dc.titleNonparametric scene parsing: Label transfer via dense scene alignmenten_US
dc.typeArticleen_US
dc.identifier.citationCe Liu, J. Yuen, and A. Torralba. “Nonparametric scene parsing: Label transfer via dense scene alignment.” Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. 2009. 1972-1979. © 2009 Institute of Electrical and Electronics Engineers.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverTorralba, Antonio
dc.contributor.mitauthorTorralba, Antonio
dc.contributor.mitauthorLiu, Ce
dc.contributor.mitauthorYuen, Jenny
dc.relation.journalIEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCe Liu; Yuen, J.; Torralba, A.en
dc.identifier.orcidhttps://orcid.org/0000-0003-4915-0256
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record