Show simple item record

dc.contributor.authorQuattoni, Ariadna
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2010-12-02T14:19:20Z
dc.date.available2010-12-02T14:19:20Z
dc.date.issued2009-08
dc.date.submitted2009-06
dc.identifier.isbn978-1-4244-3992-8
dc.identifier.issn1063-6919
dc.identifier.otherINSPEC Accession Number: 10836098
dc.identifier.urihttp://hdl.handle.net/1721.1/60054
dc.description.abstractIndoor scene recognition is a challenging open problem in high level vision. Most scene recognition models that work well for outdoor scenes perform poorly in the indoor domain. The main difficulty is that while some indoor scenes (e.g. corridors) can be well characterized by global spatial properties, others (e.g, bookstores) are better characterized by the objects they contain. More generally, to address the indoor scenes recognition problem we need a model that can exploit local and global discriminative information. In this paper we propose a prototype based model that can successfully combine both sources of information. To test our approach we created a dataset of 67 indoor scenes categories (the largest available) covering a wide range of domains. The results show that our approach can significantly outperform a state of the art classifier for the task.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CVPRW.2009.5206537en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIEEEen_US
dc.titleRecognizing indoor scenesen_US
dc.typeArticleen_US
dc.identifier.citationQuattoni, A., and A. Torralba. “Recognizing indoor scenes.” Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. 2009. 413-420. © Copyright 2009 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverTorralba, Antonio
dc.contributor.mitauthorQuattoni, Ariadna
dc.contributor.mitauthorTorralba, Antonio
dc.relation.journalProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009.en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsQuattoni, A.; Torralba, A.en
dc.identifier.orcidhttps://orcid.org/0000-0003-4915-0256
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record