MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using Pareto Trace to Determine System Passive Value Robustness

Author(s)
Hastings, Daniel E.; Ross, Adam Michael; Rhodes, Donna H
Thumbnail
DownloadRoss-2009-Using Pareto Trace to Determine System Passive Value Robustness.pdf (976.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
An important role of system designers is to effectively explore the tradespace of alternatives when making design decisions during concept phase. As systems become more complex, formal methods to enable good design decisions are essential; this can be empowered through a tradespace exploration paradigm. This paper demonstrates the use of the Pareto Trace and associated metrics to identify system alternatives across tradespaces with high degrees of passive value robustness—alternatives that continue to deliver value to stakeholders in spite of changes in needs (attributes) or context. A value-driven tradespace approach is used to represent the baseline performance versus cost of a large number of system alternatives. The classical notion of Pareto Set is extended to identify alternatives and their characteristics that lead to their inclusion in Pareto Sets across changing contexts. Using a lowearth orbiting satellite case example, five types of context changes are used to demonstrate this method: 1) addition or subtraction of attributes; 2) change in the priorities of attributes; 3) change in single attribute utility function shapes; 4) change in multiattribute utility aggregation function; and 5) addition of new decision maker. This approach demonstrates the ability for system designers to pose questions about assessment of alternatives during early conceptual design. Suggestions for application of Pareto Trace beyond the case example are discussed and presented, including application of a “fuzziness” factor and statistical measures. In particular, distinctions from traditional sensitivity analysis are made, as well as linkages to dynamic analysis for discovery of generalized value robust alternatives.
Date issued
2009-03
URI
http://hdl.handle.net/1721.1/60220
Department
delete; Massachusetts Institute of Technology. Center for Technology, Policy, and Industrial Development; Massachusetts Institute of Technology. Engineering Systems Division
Journal
IEEE Systems Conference
Publisher
Institute of Electrical and Electronics Engineers
Citation
Ross, A.M., D.H. Rhodes, and D.E. Hastings. “Using Pareto Trace to determine system passive value robustness.” Systems Conference, 2009 3rd Annual IEEE. 2009. 285-290. © 2009, IEEE
Version: Final published version
Other identifiers
INSPEC Accession Number: 10574450
ISBN
978-1-4244-3462-6

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.