Show simple item record

dc.contributor.authorVeneziano, Daniele
dc.contributor.authorFurcolo, Pierluigi
dc.date.accessioned2010-12-09T17:10:33Z
dc.date.available2010-12-09T17:10:33Z
dc.date.issued2009-11
dc.date.submitted2009-09
dc.identifier.issn1023-5809
dc.identifier.urihttp://hdl.handle.net/1721.1/60255
dc.description.abstractA fundamental problem in the analysis of multifractal processes is to estimate the scaling exponent K(q) of moments of different order q from data. Conventional estimators use the empirical moments μ^[subscript r][superscript q]=⟨ | ε[subscript r](τ)|[superscript q]⟩ of wavelet coefficients ε[subscript r](τ), where τ is location and r is resolution. For stationary measures one usually considers "wavelets of order 0" (averages), whereas for functions with multifractal increments one must use wavelets of order at least 1. One obtains K^(q) as the slope of log(μ^[subscript r][superscript q]) against log(r) over a range of r. Negative moments are sensitive to measurement noise and quantization. For them, one typically uses only the local maxima of |ε[subscript r](τ)| (modulus maxima methods). For the positive moments, we modify the standard estimator K^(q) to significantly reduce its variance at the expense of a modest increase in the bias. This is done by separately estimating K(q) from sub-records and averaging the results. For the negative moments, we show that the standard modulus maxima estimator is biased and, in the case of additive noise or quantization, is not applicable with wavelets of order 1 or higher. For these cases we propose alternative estimators. We also consider the fitting of parametric models of K(q) and show how, by splitting the record into sub-records as indicated above, the accuracy of standard methods can be significantly improved.en_US
dc.description.sponsorshipMIT-Portugal Programen_US
dc.description.sponsorshipUniversity of Salernoen_US
dc.language.isoen_US
dc.publisherEuropean Geosciences Union, American Geophysical Unionen_US
dc.relation.isversionofhttp://dx.doi.org/10.5194/npg-16-641-2009en_US
dc.rightsCreative Commons Attribution 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0en_US
dc.sourceCopernicus Publicationsen_US
dc.titleImproved moment scaling estimation for multifractal signalsen_US
dc.typeArticleen_US
dc.identifier.citationVeneziano, D., and P. Furcolo. “Improved moment scaling estimation for multifractal signals.” Nonlinear Processes in Geophysics 16.6 (2009): 641-653.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.approverVeneziano, Daniele
dc.contributor.mitauthorVeneziano, Daniele
dc.relation.journalNonlinear Processes in Geophysicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsVeneziano, D.; Furcolo, P.en
dc.identifier.orcidhttps://orcid.org/0000-0001-9099-3023
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record