Show simple item record

dc.contributor.authorSachs, Karen
dc.contributor.authorItani, Solomon
dc.contributor.authorCarlisle, Jennifer
dc.contributor.authorNolan, Garry P.
dc.contributor.authorPe'er, Dana
dc.contributor.authorLauffenburger, Douglas A.
dc.date.accessioned2010-12-17T21:50:09Z
dc.date.available2010-12-17T21:50:09Z
dc.date.issued2009-02
dc.identifier.issn1066-5277
dc.identifier.issn1557-8666
dc.identifier.urihttp://hdl.handle.net/1721.1/60319
dc.description.abstractFlow cytometric measurement of signaling protein abundances has proved particularly useful for elucidation of signaling pathway structure. The single cell nature of the data ensures a very large dataset size, providing a statistically robust dataset for structure learning. Moreover, the approach is easily scaled to many conditions in high throughput. However, the technology suffers from a dimensionality constraint: at the cutting edge, only about 12 protein species can be measured per cell, far from sufficient for most signaling pathways. Because the structure learning algorithm (in practice) requires that all variables be measured together simultaneously, this restricts structure learning to the number of variables that constitute the flow cytometer's upper dimensionality limit. To address this problem, we present here an algorithm that enables structure learning for sparsely distributed data, allowing structure learning beyond the measurement technology's upper dimensionality limit for simultaneously measurable variables. The algorithm assesses pairwise (or n-wise) dependencies, constructs “Markov neighborhoods” for each variable based on these dependencies, measures each variable in the context of its neighborhood, and performs structure learning using a constrained search.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant AI06584)en_US
dc.description.sponsorshipBurroughs Wellcome Funden_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (U19 AI057229)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (2P01 AI36535)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (U19 AI062623)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01-AI065824)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (1P50 CA114747)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (2P01 CA034233-22A1)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (grant U54 RFA-CA-05-024)en_US
dc.description.sponsorshipLeukemia & Lymphoma Society of America (grant 7017-6)en_US
dc.description.sponsorshipLeukemia & Lymphoma Society of America (postdoctoral fellowship)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (HHSN272200700038C)en_US
dc.language.isoen_US
dc.publisherMary Ann Liebert, Inc.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1089/cmb.2008.07TTen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Lauffenburgeren_US
dc.titleLearning signaling network structures with sparsely distributed dataen_US
dc.typeArticleen_US
dc.identifier.citationSachs, Karen et al. “Learning Signaling Network Structures with Sparsely Distributed Data.” Journal of Computational Biology 16.2 (2010): 201-212. © 2009 Mary Ann Liebert, Inc.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverLauffenburger, Douglas A.
dc.contributor.mitauthorLauffenburger, Douglas A.
dc.contributor.mitauthorItani, Solomon
dc.contributor.mitauthorCarlisle, Jennifer
dc.relation.journalJournal of Computational Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSachs, Karen; Itani, Solomon; Carlisle, Jennifer; Nolan, Garry P.; Pe'er, Dana; Lauffenburger, Douglas A.en
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record