MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Selective Disruption of the Cerebral Neocortex in Alzheimer's Disease

Author(s)
Desikan, Rahul S.; Sabuncu, Mert R.; Schmansky, Nicholas J.; Reuter, Martin; Cabral, Howard J.; Hess, Christopher P.; Weiner, Michael W.; Biffi, Alessandro; Anderson, Christopher D.; Rosand, Jonathan; Salat, David H.; Kemper, Thomas L.; Dale, Anders M.; Sperling, Reisa A.; Fischl, Bruce; ... Show more Show less
Thumbnail
DownloadDesikan-2010-Selective Disruption.pdf (2.048Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/2.5/
Metadata
Show full item record
Abstract
Background: Alzheimer's disease (AD) and its transitional state mild cognitive impairment (MCI) are characterized by amyloid plaque and tau neurofibrillary tangle (NFT) deposition within the cerebral neocortex and neuronal loss within the hippocampal formation. However, the precise relationship between pathologic changes in neocortical regions and hippocampal atrophy is largely unknown. Methodology/Principal Findings: In this study, combining structural MRI scans and automated image analysis tools with reduced cerebrospinal fluid (CSF) Aß levels, a surrogate for intra-cranial amyloid plaques and elevated CSF phosphorylated tau (p-tau) levels, a surrogate for neocortical NFTs, we examined the relationship between the presence of Alzheimer's pathology, gray matter thickness of select neocortical regions, and hippocampal volume in cognitively normal older participants and individuals with MCI and AD (n = 724). Amongst all 3 groups, only select heteromodal cortical regions significantly correlated with hippocampal volume. Amongst MCI and AD individuals, gray matter thickness of the entorhinal cortex and inferior temporal gyrus significantly predicted longitudinal hippocampal volume loss in both amyloid positive and p-tau positive individuals. Amongst cognitively normal older adults, thinning only within the medial portion of the orbital frontal cortex significantly differentiated amyloid positive from amyloid negative individuals whereas thinning only within the entorhinal cortex significantly discriminated p-tau positive from p-tau negative individuals. Conclusions/Significance: Cortical Aβ and tau pathology affects gray matter thinning within select neocortical regions and potentially contributes to downstream hippocampal degeneration. Neocortical Alzheimer's pathology is evident even amongst older asymptomatic individuals suggesting the existence of a preclinical phase of dementia.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/60323
Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
PLoS ONE
Publisher
Public Library of Science
Citation
Desikan RS, Sabuncu MR, Schmansky NJ, Reuter M, Cabral HJ, et al. (2010) Selective Disruption of the Cerebral Neocortex in Alzheimer's Disease. PLoS ONE 5(9): e12853.
Version: Final published version
ISSN
1932-6203

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.