Show simple item record

dc.contributor.authorHaslinger, Robert Heinz
dc.contributor.authorBrown, Emery N.
dc.contributor.authorPipa, Gordon
dc.date.accessioned2010-12-21T16:47:33Z
dc.date.available2010-12-21T16:47:33Z
dc.date.issued2010-10
dc.identifier.issn0899-7667
dc.identifier.issn1530-888X
dc.identifier.urihttp://hdl.handle.net/1721.1/60336
dc.description.abstractOne approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time-rescaling theorem provides a goodness-of-fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model's spike probability) to be independent and exponentially distributed if the model is accurate. A Kolmogorov-Smirnov (KS) test between the rescaled ISIs and the exponential distribution is then used to check goodness of fit. This rescaling relies on assumptions of continuously defined time and instantaneous events. However, spikes have finite width, and statistical models of spike trains almost always discretize time into bins. Here we demonstrate that finite temporal resolution of discrete time models prevents their rescaled ISIs from being exponentially distributed. Poor goodness of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations of the time-rescaling theorem to discrete time models. In the first we propose that instead of assuming the rescaled times to be exponential, the reference distribution be estimated through direct simulation by the fitted model. In the second, we prove a discrete time version of the time-rescaling theorem that analytically corrects for the effects of finite resolution. This allows us to define a rescaled time that is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the efficacy of both techniques by fitting generalized linear models to both simulated spike trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly identical results, reducing the false-positive rate of the KS test and greatly increasing the reliability of model evaluation based on the time-rescaling theorem.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (K25 NS052422-02)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (DP1 OD003646-01)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (MH59733-07)en_US
dc.description.sponsorshipHertie Foundationen_US
dc.description.sponsorshipMax Planck Society for the Advancement of Scienceen_US
dc.description.sponsorshipEuropean Commission (grant FP6-2005-NEST-Path-043309)en_US
dc.language.isoen_US
dc.publisherMIT Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1162/NECO_a_00015en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT Pressen_US
dc.titleDiscrete Time Rescaling Theorem: Determining Goodness of Fit for Discrete Time Statistical Models of Neural Spikingen_US
dc.typeArticleen_US
dc.identifier.citationHaslinger, Robert, Gordon Pipa, and Emery Brown. “Discrete Time Rescaling Theorem: Determining Goodness of Fit for Discrete Time Statistical Models of Neural Spiking.” Neural Computation 22.10 (2010): 2477-2506. © 2010 Massachusetts Institute of Technology.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.approverHaslinger, Robert Heinz
dc.contributor.mitauthorHaslinger, Robert Heinz
dc.contributor.mitauthorBrown, Emery N.
dc.contributor.mitauthorPipa, Gordon
dc.relation.journalNeural Computationen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHaslinger, Robert; Pipa, Gordon; Brown, Emeryen
dc.identifier.orcidhttps://orcid.org/0000-0003-2668-7819
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record