MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Analysis of the Effect of Topography on the Martian Hadley Cells

Author(s)
Plumb, R. Alan; Zalucha, Angela Marie; Wilson, R. John
Thumbnail
DownloadZalucha-2010-An Analysis of the E.pdf (2.237Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Previous work with Mars general circulation models (MGCMs) has shown that the north–south slope in Martian topography causes asymmetries in the Hadley cells at equinox and in the annual average. To quantitatively solve for the latitude of the dividing streamline and poleward boundaries of the cells, the Hadley cell model of Lindzen and Hou was modified to include topography. The model was thermally forced by Newtonian relaxation to an equilibrium temperature profile calculated with daily averaged solar forcing at constant season. Two sets of equilibrium temperatures were considered that either contained the effects of convection or did not. When convective effects were allowed, the presence of the slope component shifted the dividing streamline upslope, qualitatively similar to a change in season in Lindzen and Hou’s original (flat) model. The modified model also confirmed that the geometrical effects of the slope are much smaller than the thermal effects of the slope on the radiative–convective equilibrium temperature aloft. The results are compared to a simple MGCM forced by Newtonian relaxation to the same equilibrium temperature profiles, and the two models agree except at the winter pole near solstice. The simple MGCM results for radiative–convective forcing also show an asymmetry between the strengths of the Hadley cells at the northern summer and northern winter solstices. The Hadley cell weakens with increasing slope steepness at northern summer solstice but has little effect on the strength at northern winter solstice.
Date issued
2010-03
URI
http://hdl.handle.net/1721.1/60347
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of the Atmospheric Sciences
Publisher
American Meteorological Society
Citation
Zalucha, Angela M, R. Alan Plumb, and R. John Wilson. “An Analysis of the Effect of Topography on the Martian Hadley Cells.” Journal of the Atmospheric Sciences 67.3 (2010): 673-693. © 2010 American Meteorological Society
Version: Final published version
ISSN
0022-4928
1520-0469

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.