Show simple item record

dc.contributor.authorPeltonen, Leena
dc.contributor.authorNaukkarinen, Jussi
dc.contributor.authorSurakka, Ida
dc.contributor.authorPietiläinen, Kirsi H.
dc.contributor.authorRissanen, Aila
dc.contributor.authorSalomaa, Veikko
dc.contributor.authorRipatti, Samuli
dc.contributor.authorYki-Järvinen, Hannele
dc.contributor.authorvan Duijn, Cornelia M.
dc.contributor.authorWichmann, H.-Erich
dc.contributor.authorKaprio, Jaakko
dc.contributor.authorTaskinen, Marja-Riitta
dc.contributor.authorENGAGE Consortium
dc.date.accessioned2011-01-06T22:17:58Z
dc.date.available2011-01-06T22:17:58Z
dc.date.issued2010-06
dc.date.submitted2009-11
dc.identifier.issn1553-7404
dc.identifier.issn1553-7390
dc.identifier.urihttp://hdl.handle.net/1721.1/60388
dc.description.abstractTo get beyond the “low-hanging fruits” so far identified by genome-wide association (GWA) studies, new methods must be developed in order to discover the numerous remaining genes that estimates of heritability indicate should be contributing to complex human phenotypes, such as obesity. Here we describe a novel integrative method for complex disease gene identification utilizing both genome-wide transcript profiling of adipose tissue samples and consequent analysis of genome-wide association data generated in large SNP scans. We infer causality of genes with obesity by employing a unique set of monozygotic twin pairs discordant for BMI (n = 13 pairs, age 24–28 years, 15.4 kg mean weight difference) and contrast the transcript profiles with those from a larger sample of non-related adult individuals (N = 77). Using this approach, we were able to identify 27 genes with possibly causal roles in determining the degree of human adiposity. Testing for association of SNP variants in these 27 genes in the population samples of the large ENGAGE consortium (N = 21,000) revealed a significant deviation of P-values from the expected (P = 4×10−4). A total of 13 genes contained SNPs nominally associated with BMI. The top finding was blood coagulation factor F13A1 identified as a novel obesity gene also replicated in a second GWA set of ~2,000 individuals. This study presents a new approach to utilizing gene expression studies for informing choice of candidate genes for complex human phenotypes, such as obesity.en_US
dc.description.sponsorshipSeventh Framework Programme (European Commission) (FP7/2007-2013)en_US
dc.description.sponsorshipENGAGE Consortium (grant agreement HEALTH-F4-2007-201413)en_US
dc.language.isoen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pgen.1000976en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/en_US
dc.sourcePLoSen_US
dc.titleUse of Genome-Wide Expression Data to Mine the "Gray Zone" of GWA Studies Leads to Novel Candidate Obesity Genesen_US
dc.typeArticleen_US
dc.identifier.citationNaukkarinen, Jussi et al. “Use of Genome-Wide Expression Data to Mine the “Gray Zone” of GWA Studies Leads to Novel Candidate Obesity Genes.” PLoS Genet 6.6 (2010): e1000976.en_US
dc.contributor.departmentBroad Institute of MIT and Harvarden_US
dc.contributor.approverPeltonen, Leena
dc.contributor.mitauthorPeltonen, Leena
dc.relation.journalPLoS Geneticsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsNaukkarinen, Jussi; Surakka, Ida; Pietiläinen, Kirsi H.; Rissanen, Aila; Salomaa, Veikko; Ripatti, Samuli; Yki-Järvinen, Hannele; van Duijn, Cornelia M.; Wichmann, H.-Erich; Kaprio, Jaakko; Taskinen, Marja-Riitta; Peltonen, Leenaen
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record