MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Algorithmic Framework for Wireless Information Flow

Author(s)
Goemans, Michel X.; Iwata, Satoru; Zenklusen, Rico
Thumbnail
DownloadGoemans_An algorithmic.pdf (244.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We consider the wireless relay network model as introduced by Avestimehr, Diggavi and Tse for approximating Gaussian relay channels and show that it is a special case of a more abstract flow model that we introduce in this paper. This flow model is based on linking systems, a combinatorial structure with a tight connection to matroids. A main advantage of this flow model is that properties and algorithms can easily be derived from existing theory on matroids and linking systems. In particular we show a max-flow min-cut theorem and submodularity of cuts. Furthermore, efficient algorithms for matroid intersection or for matroid partition can be used for finding a maximum flow and a minimum cut. Thus, this approach can profit from well-established matroid (intersection or partition) algorithms, leading to faster algorithms for large capacity networks. Another advantage of our approach is that it is easy to extend or adapt it to similar problems. In particular, the algorithm we present for finding maximum flows can easily be adapted to find a maximum flow with minimum costs when costs are introduced on the inputs and outputs of the relays.
Date issued
2010-01
URI
http://hdl.handle.net/1721.1/60563
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing, 2009. Allerton 2009.
Publisher
Institute of Electrical and Electronics Engineers
Citation
Goemans, M.X., S. Iwata, and R. Zenklusen. “An algorithmic framework for wireless information flow.” Communication, Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on. 2009. 294-300. © Copyright 2009 IEEE
Version: Final published version
Other identifiers
INSPEC Accession Number: 11135249
ISBN
978-1-4244-5870-7

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.