MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interpretation of the propagation of surface altimetric observations in terms of planetary waves and geostrophic turbulence

Author(s)
Tulloch, Ross; Smith, K. Shafer; Marshall, John C
Thumbnail
DownloadMarshall_Interpretation of.pdf (14.61Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The interpretation of surface altimetric signals in terms of Rossby waves is revisited. Rather than make the long-wave approximation, the horizontal scale of the waves is adjusted to optimally fit the phase speed predicted by linear theory to that observed by altimetry, assuming a first baroclinic mode vertical structure. It is found that in the tropical band the observations can be fit if the wavelength of the waves is assumed to be large, of order 600 km or so. However poleward of ±30°, it is more difficult to fit linear theory to the observations, and the fit is less good than at lower latitudes: the required scale of the waves must be reduced to about 100 km, somewhat larger than the local deformation wavelength. It is argued that these results can be interpreted in terms of Rossby wave, baroclinic instability, and turbulence theory. At low latitudes there is an overlap between geostrophic turbulence and Rossby wave timescales, and so, an upscale energy transfer from baroclinic instability at the deformation scale produces waves. At high latitudes there is no such overlap and waves are not produced by upscale energy transfer. These ideas are tested by using surface drifter data to infer turbulent velocities and timescales that are compared to those of linear Rossby waves. A transition from a field dominated by waves to one dominated by turbulence occurs at about ±30°, broadly consistent with the transition that is required to fit linear theory to altimetric observations.
Date issued
2008-07
URI
http://hdl.handle.net/1721.1/60564
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of Geophysical Research
Publisher
American Geophysical Union
Citation
Tulloch, R., J. Marshall, and K. S. Smith (2009), Interpretation of the propagation of surface altimetric observations in terms of planetary waves and geostrophic turbulence, J. Geophys. Res., 114, C02005, doi:10.1029/2008JC005055. ©2009 American Geophysical Union.
Version: Final published version
ISSN
0148–0227

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.