| dc.contributor.author | Recht, Benjamin | |
| dc.contributor.author | Fazel, Maryam | |
| dc.contributor.author | Parrilo, Pablo A. | |
| dc.date.accessioned | 2011-01-14T17:15:06Z | |
| dc.date.available | 2011-01-14T17:15:06Z | |
| dc.date.issued | 2010-08 | |
| dc.date.submitted | 2007-07 | |
| dc.identifier.issn | 0036-1445 | |
| dc.identifier.issn | 1095-7200 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/60575 | |
| dc.description.abstract | The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard because it contains vector cardinality minimization as a special case.
In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum-rank solution can be recovered by solving a convex optimization problem, namely, the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is sufficiently large.
The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this preexisting concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to minimizing the nuclear norm and illustrate our results with numerical examples. | en_US |
| dc.description.sponsorship | United States. Air Force Office of Scientific Research (MURI 2003-07688-1) | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (FRG DMS-0757207) | en_US |
| dc.language.iso | en_US | |
| dc.publisher | Society of Industrial and Applied Mathematics (SIAM) | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1137/070697835 | en_US |
| dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
| dc.source | SIAM | en_US |
| dc.title | Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Recht, Benjamin, Maryam Fazel, and Pablo A. Parrilo. “Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization.” SIAM Review 52.3 (2010): 471-501. ©2010 Society for Industrial and Applied Mathematics | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Laboratory for Information and Decision Systems | en_US |
| dc.contributor.approver | Parrilo, Pablo A. | |
| dc.contributor.mitauthor | Parrilo, Pablo A. | |
| dc.relation.journal | SIAM Review | en_US |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dspace.orderedauthors | Recht, Benjamin; Fazel, Maryam; Parrilo, Pablo A. | en |
| dc.identifier.orcid | https://orcid.org/0000-0003-1132-8477 | |
| mit.license | PUBLISHER_POLICY | en_US |
| mit.metadata.status | Complete | |