MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electron interactions in bilayer graphene: Marginal Fermi liquid and zero-bias anomaly

Author(s)
Nandkishore, Rahul Mahajan; Levitov, Leonid
Thumbnail
DownloadNandkishore-2010-Electron interaction.pdf (250.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We analyze the many-body properties of bilayer graphene (BLG) at charge neutrality, governed by long-range interactions between electrons. Perturbation theory in a large number of flavors is used in which the interactions are described within a random phase approximation, taking account of dynamical screening effect. Crucially, the dynamically screened interaction retains some long-range character, resulting in log2 renormalization of key quantities. We carry out the perturbative renormalization group calculations to one loop order and find that BLG behaves to leading order as a marginal Fermi liquid. Interactions produce a log squared renormalization of the quasiparticle residue and the interaction vertex function while all other quantities renormalize only logarithmically. We solve the RG flow equations for the Green’s function with logarithmic accuracy and find that the quasiparticle residue flows to zero under RG. At the same time, the gauge-invariant quantities, such as the compressibility, remain finite to log2 order, with subleading logarithmic corrections. The key experimental signature of this marginal Fermi liquid behavior is a strong suppression of the tunneling density of states, which manifests itself as a zero bias anomaly in tunneling experiments in a regime where the compressibility is essentially unchanged from the noninteracting value.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/60659
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Nandkishore, Rahul and Leonid Levitov. "Electron interactions in bilayer graphene: Marginal Fermi liquid and zero-bias anomaly." Physical Review B 82.11 (2010) : 115431. © 2010 The American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.