MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Maximum Entropy Distributions of Scale-Invariant Processes

Author(s)
Nieves, Veronica; Wang, Jingfeng; Bras, Rafael L.; Wood, Elizabeth B.
Thumbnail
DownloadNieves-2010-Maximum Entropy Dist.pdf (616.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Organizations of many variables in nature such as soil moisture and topography exhibit patterns with no dominant scales. The maximum entropy (ME) principle is proposed to show how these variables can be statistically described using their scale-invariant properties and geometric mean. The ME principle predicts with great simplicity the probability distribution of a scale-invariant process in terms of macroscopic observables. The ME principle offers a universal and unified framework for characterizing such multiscaling processes.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/60702
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Nieves, Veronica et al. "." Physical Review Letters 105.11 (2010): 118701. © 2010 The American Physical Society
Version: Final published version
ISSN
0031-9007

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.