Show simple item record

dc.contributor.authorLun, Desmond S.
dc.contributor.authorRockwell, Graham
dc.contributor.authorGuido, Nicholas J.
dc.contributor.authorBaym, Michael Hartmann
dc.contributor.authorKelner, Jonathan Adam
dc.contributor.authorBerger, Bonnie
dc.contributor.authorGalagan, James E.
dc.contributor.authorChurch, George M.
dc.date.accessioned2011-02-01T13:36:48Z
dc.date.available2011-02-01T13:36:48Z
dc.date.issued2009-08
dc.date.submitted2009-03
dc.identifier.issn1744-4292
dc.identifier.urihttp://hdl.handle.net/1721.1/60870
dc.description.abstractIn the past decade, computational methods have been shown to be well suited to unraveling the complex web of metabolic reactions in biological systems. Methods based on flux–balance analysis (FBA) and bi-level optimization have been used to great effect in aiding metabolic engineering. These methods predict the result of genetic manipulations and allow for the best set of manipulations to be found computationally. Bi-level FBA is, however, limited in applicability because the required computational time and resources scale poorly as the size of the metabolic system and the number of genetic manipulations increase. To overcome these limitations, we have developed Genetic Design through Local Search (GDLS), a scalable, heuristic, algorithmic method that employs an approach based on local search with multiple search paths, which results in effective, low-complexity search of the space of genetic manipulations. Thus, GDLS is able to find genetic designs with greater in silico production of desired metabolites than can feasibly be found using a globally optimal search and performs favorably in comparison with heuristic searches based on evolutionary algorithms and simulated annealing.en_US
dc.description.sponsorshipHertz Foundationen_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/msb.2009.57en_US
dc.rightsAttribution-Noncommercial-Share Alike 3.0 Unporteden_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleLarge-scale identification of genetic design strategies using local searchen_US
dc.typeArticleen_US
dc.identifier.citationLun, Desmond S et al. “Large-scale identification of genetic design strategies using local search.” Mol Syst Biol 5 (2009): 296.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverKelner, Jonathan Adam
dc.contributor.mitauthorBaym, Michael Hartmann
dc.contributor.mitauthorKelner, Jonathan Adam
dc.contributor.mitauthorBerger, Bonnie
dc.relation.journalMolecular Systems Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLun, Desmond S; Rockwell, Graham; Guido, Nicholas J; Baym, Michael; Kelner, Jonathan A; Berger, Bonnie; Galagan, James E; Church, George Men
dc.identifier.orcidhttps://orcid.org/0000-0002-4257-4198
dc.identifier.orcidhttps://orcid.org/0000-0003-1303-5598
dc.identifier.orcidhttps://orcid.org/0000-0002-2724-7228
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record