MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)

Author(s)
Janeiro, Raymond P.; Einstein, Herbert H.
Thumbnail
DownloadEinstein_7-22-09Janeiro.pdf (1.461Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
This paper presents the results of an experimental investigation on the cracking behavior of brittle heterogeneous materials. Unconfined, uniaxial compression tests were conducted on prismatic gypsum specimens containing either one, or two, inclusions. These inclusions were of different strengths, stiffnesses, shapes, and sizes. Emphasis was placed on crack coalescence processes associated with specimens containing an inclusion pair, as this was the primary objective of the research. Some observations reported in this study compare well with those of other researchers as the overall cracking sequences are similar. On the other hand, the amount of debonding observed in this study at the inclusion interface is significantly less than what was previously observed. Moreover, the extent of shear crack growth at an inclusion boundary increased substantially in specimens containing two inclusions, compared to those with single inclusions.
Date issued
2010-02
URI
http://hdl.handle.net/1721.1/60922
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
International Journal of Fracture
Publisher
Springer
Citation
Janeiro, Raymond, and Herbert Einstein. “Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression).” International Journal of Fracture 164.1 (2010): 83-102.
Version: Author's final manuscript
ISSN
0376-9429

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.