MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization and Control of the Wettability of Conducting Polymer Thin Films

Author(s)
Hunter, Ian; Chang, Jean H.
Thumbnail
DownloadHunter_CharacterizationAnd.pdf (868.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The wettability of electrochemically deposited conducting polymer films is highly dependent on several parameters including the deposition conditions, the dopant, and the roughness of the working electrode. To produce superhydrophobic surfaces, one must be able to control the micro and nanostructure of the film. In this study, a template-free method of producing superhydrophobic (water contact angle of 154°) polypyrrole films was demonstrated. The polypyrrole was doped with the low surface-energy heptadecafluorooctanesulfonic acid and had microstructures with nanometer-scale roughness. The microstructures served to increase the roughness of the film and amplify the hydrophobicity of the surface. It is also of interest to be able to dynamically adjust the wettability of a polypyrrole surface after deposition. Applications of this functionality include microfluidics, self-cleaning surfaces, liquid lenses, and smart textiles. By oxidizing or reducing a polypyrrole film, one can change the surface morphology as well as the chemical composition, and control the wettability of the surface. This study characterizes the electrochemically-induced changes in surface energy of polypyrrole. The relationship between applied voltage, charge transferred, surface roughness, and water contact angle was investigated. Upon reduction, the polypyrrole film was switched to a superhydrophilic state and the maximum change in contact angle was observed to be 154°. Surface wettability was found to be not fully reversible, with some hysteresis occurring after the first electrochemical cycle.
Date issued
2010-01
URI
http://hdl.handle.net/1721.1/60960
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Materials Research Society (MRS) symposia proceedings
Publisher
Materials Research Society
Citation
Chang, Jean, and Ian W. Hunter. “Characterization and Control of the Wettability of Conducting Polymer Thin Films.” Materials Research Society Symposium Proceedings. 2009. ©Materials Research Society 2010
Version: Final published version
ISSN
0272-9172

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.