MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anisotropic electro-osmotic flow over superhydrophobic surfaces

Author(s)
Bazant, Martin Z.; Bahga, Supreet S.; Vinogradova, Olga I.
Thumbnail
DownloadBazant_Anisotropic electro.pdf (158.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Patterned surfaces with large effective slip lengths, such as super-hydrophobic surfaces containing trapped gas bubbles, have the potential to greatly enhance electrokinetic phenomena. Existing theories assume either homogeneous flat surfaces or patterned surfaces with thin double layers (compared with the texture correlation length) and thus predict simple surface-averaged, isotropic flows (independent of orientation). By analysing electro-osmotic flows over striped slip-stick surfaces with arbitrary double-layer thickness, we show that surface anisotropy generally leads to a tensorial electro-osmotic mobility and subtle, nonlinear averaging of surface properties. Interestingly, the electro-osmotic mobility tensor is not simply related to the hydrodynamic slip tensor, except in special cases. Our results imply that significantly enhanced electro-osmotic flows over super-hydrophobic surfaces are possible, but only with charged liquid–gas interfaces.
Date issued
2010-02
URI
http://hdl.handle.net/1721.1/60963
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Fluid Mechanics
Publisher
Cambridge University Press
Citation
Bahga, Supreet S., Olga I. Vinogradova, and Martin Z. Bazant. “Anisotropic electro-osmotic flow over super-hydrophobic surfaces.” Journal of Fluid Mechanics 644 (2010): 245. © Cambridge University Press 2010
Version: Final published version
ISSN
0022-1120
1469-7645

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.