Show simple item record

dc.contributor.authorCeder, Gerbrand
dc.contributor.authorOng, Shyue Ping
dc.contributor.authorChan, Maria K.
dc.contributor.authorArmiento, Rickard R.
dc.contributor.authorChevrier, Vincent L.
dc.date.accessioned2011-02-18T19:14:31Z
dc.date.available2011-02-18T19:14:31Z
dc.date.issued2010-08
dc.date.submitted2010-07
dc.identifier.issn1098-0121
dc.identifier.issn1550-235X
dc.identifier.urihttp://hdl.handle.net/1721.1/60988
dc.description.abstractWe compare the accuracy of conventional semilocal density functional theory (DFT), the DFT+U method, and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional for structural parameters, redox reaction energies, and formation energies of transition metal compounds. Conventional DFT functionals significantly underestimate redox potentials for these compounds. Zhou et al. [Phys. Rev. B 70, 235121 (2004)] addressed this issue with DFT+U and a linear-response scheme for calculating U values. We show that the Li intercalation potentials of prominent Li-ion intercalation battery materials, such as the layered LixMO2 (M=Co and Ni), LixTiS2; olivine LixMPO4 (M=Mn, Fe, Co, and Ni); and spinel-like LixMn2O4, LixTi2O4, are also well reproduced by HSE06, due to the self-interaction error correction from the partial inclusion of Hartree-Fock exchange. For formation energies, HSE06 performs well for transition metal compounds, which typically are not well reproduced by conventional DFT functionals but does not significantly improve the results of nontransition metal oxides. Hence, we find that hybrid functionals provide a good alternative to DFT+U for transition metal applications when the large extra computational effort is compensated by the benefits of (i) avoiding species-specific adjustable parameters and (ii) a more universal treatment of the self-interaction error that is not exclusive to specific atomic orbital projections on selected ions.en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Contract No. DE-FG02-96ER45571)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Center for Materials Science and Engineering (Grant No. DMR-819762)en_US
dc.description.sponsorshipTeragrid (Firm) (Grant No. TG-DMR970008S)en_US
dc.language.isoen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.82.075122en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAPSen_US
dc.titleHybrid density functional calculations of redox potentials and formation energies of transition metal compoundsen_US
dc.typeArticleen_US
dc.identifier.citationChevrier, V. L. et al. “Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds.” Physical Review B 82.7 (2010): 075122. © 2010 The American Physical Society.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.approverCeder, Gerbrand
dc.contributor.mitauthorCeder, Gerbrand
dc.contributor.mitauthorOng, Shyue Ping
dc.contributor.mitauthorChan, Maria K.
dc.contributor.mitauthorArmiento, Rickard R.
dc.contributor.mitauthorChevrier, Vincent L.
dc.relation.journalPhysical Review Ben_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsChevrier, V.; Ong, S.; Armiento, R.; Chan, M.; Ceder, G.en
dc.identifier.orcidhttps://orcid.org/0000-0002-5571-0814
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record