Show simple item record

dc.contributor.authorRakich, P. T.
dc.contributor.authorSoljacic, Marin
dc.contributor.authorAbad, J. B.
dc.contributor.authorRodriguez-Wong, Alejandro
dc.contributor.authorJoannopoulos, John
dc.contributor.authorJohnson, Steven G
dc.date.accessioned2011-03-03T13:57:49Z
dc.date.available2011-03-03T13:57:49Z
dc.date.issued2010-03
dc.date.submitted2009-12
dc.identifier.issn1077-3118
dc.identifier.issn0003-6951
dc.identifier.urihttp://hdl.handle.net/1721.1/61380
dc.description.abstractIn this letter, we show theoretically how the light-confining properties of triply-resonant photonic resonators can be tailored to enable dramatic enhancements of the conversion efficiency of terahertz (THz) generation via nonlinear frequency down-conversion processes. Using detailed numerical calculations, we predict that this approach can be used to reduce up to three orders of magnitude the pump powers required to reach quantum-limited conversion efficiency of THz generation in conventional nonlinear optical material systems. Furthermore, we propose a realistic design readily accessible experimentally, both for fabrication and demonstration of optimal THz conversion efficiency at sub-W power levels.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (MRSEC DMR-0819762)en_US
dc.description.sponsorshipUnited States. Army Research Office. Institute for Soldier Nanotechnologies (Contract No. W911NF-07-D-0004)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.3359429en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleEfficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixingen_US
dc.typeArticleen_US
dc.identifier.citationBravo-Abad, J. et al. “Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing.” Applied Physics Letters 96.10 (2010): 101110-3. © 2010 American Institute of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.approverJohnson, Steven G.
dc.contributor.mitauthorBravo-Abad, Jorge
dc.contributor.mitauthorRodriguez, Alejandro W.
dc.contributor.mitauthorJoannopoulos, John D.
dc.contributor.mitauthorJohnson, Steven G.
dc.contributor.mitauthorSoljacic, Marin
dc.relation.journalApplied Physics Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBravo-Abad, J.; Rodriguez, A. W.; Joannopoulos, J. D.; Rakich, P. T.; Johnson, S. G.; Soljačić, M.en
dc.identifier.orcidhttps://orcid.org/0000-0001-7327-4967
dc.identifier.orcidhttps://orcid.org/0000-0002-7184-5831
dc.identifier.orcidhttps://orcid.org/0000-0002-7244-3682
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record