Show simple item record

dc.contributor.authorTingley, Peter William
dc.contributor.authorRam, Arun
dc.date.accessioned2011-03-03T21:55:01Z
dc.date.available2011-03-03T21:55:01Z
dc.date.issued2010-11
dc.date.submitted2010-03
dc.identifier.issn0161-1712
dc.identifier.urihttp://hdl.handle.net/1721.1/61397
dc.description.abstractThe Misra-Miwa v-deformed Fock space is a representation of the quantized affine algebra Uv(sle). It has a standard basis indexed by partitions, and the nonzero matrix entries of the action of the Chevalley generators with respect to this basis are powers of v. Partitions also index the polynomial Weyl modules for Uq (glN) as N tends to infinity. We explain how the powers of [v] which appear in the Misra-Miwa Fock space also appear naturally in the context of Weyl modules. The main tool we use is the Shapovalov determinant for a universal Verma module.en_US
dc.language.isoen_US
dc.publisherHindawi Pub. Corp.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1155/2010/326247en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.0/en_US
dc.sourceHindawien_US
dc.titleUniversal Verma Modules and the Misra-Miwa Fock Spaceen_US
dc.typeArticleen_US
dc.identifier.citationRam, Arun and Peter Tingley, “Universal Verma Modules and the Misra-Miwa Fock Space,” International Journal of Mathematics and Mathematical Sciences, vol. 2010, Article ID 326247, 19 pages, 2010. © 2010 Arun Ram and Peter Tingley.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverTingley, Peter William
dc.contributor.mitauthorTingley, Peter William
dc.relation.journalInternational Journal of Mathematics and Mathematical Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRam, Arun; Tingley, Peteren
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record