Show simple item record

dc.contributor.authorEwoldt, Randy H.
dc.contributor.authorWinter, Peter
dc.contributor.authorMaxey, Jason
dc.contributor.authorMcKinley, Gareth H.
dc.date.accessioned2011-03-08T14:04:11Z
dc.date.available2011-03-08T14:04:11Z
dc.date.issued2009-12
dc.date.submitted2009-05
dc.identifier.issn0035-4511
dc.identifier.issn1435-1528
dc.identifier.urihttp://hdl.handle.net/1721.1/61627
dc.description.abstractWe explore the utility of strain-controlled large amplitude oscillatory shear (LAOS) deformation for identifying and characterizing apparent yield stress responses in elastoviscoplastic materials. Our approach emphasizes the visual representation of the LAOS stress response within the framework of Lissajous curves with strain, strain-rate, and stress as the coordinate axes, in conjunction with quantitative analysis of the corresponding limit cycle behavior. This approach enables us to explore how the material properties characterizing the yielding response depend on both strain amplitude and frequency of deformation. Canonical constitutive models (including the purely viscous Carreau model and the elastic Bingham model) are used to illustrate the characteristic features of pseudoplastic and elastoplastic material responses under large amplitude oscillatory shear. A new parameter, the perfect plastic dissipation ratio, is introduced for uniquely identifying plastic behavior. Experimental results are presented for two complex fluids, a pseudoplastic shear-thinning xanthan gum solution and an elastoviscoplastic invert-emulsion drilling fluid. The LAOS test protocols and the associated material measures provide a rheological fingerprint of the yielding behavior of a complex fluid that can be compactly represented within the domain of a Pipkin diagram defined by the amplitude and timescale of deformation.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Graduate Research Fellowship)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (DARPA) (Chemical Robots program)en_US
dc.language.isoen_US
dc.publisherSpringer Berlin / Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00397-009-0403-7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleLarge amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materialsen_US
dc.typeArticleen_US
dc.identifier.citationEwoldt, Randy et al. “Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials.” Rheologica Acta 49.2 (2010): 191-212.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverMcKinley, Gareth H.
dc.contributor.mitauthorEwoldt, Randy H.
dc.contributor.mitauthorWinter, Peter
dc.contributor.mitauthorMcKinley, Gareth H.
dc.relation.journalRheologica Actaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsEwoldt, Randy H.; Winter, Peter; Maxey, Jason; McKinley, Gareth H.en
dc.identifier.orcidhttps://orcid.org/0000-0001-8323-2779
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record