Engineering Endostatin-Producing Cartilaginous Constructs for Cartilage Repair Using Nonviral Transfection of Chondrocyte-Seeded and Mesenchymal-Stem-Cell-Seeded Collagen Scaffolds
Author(s)
Jeng, Lily; Olsen, Bjorn R.; Spector, Myron
DownloadJeng-2010-Engineering Endostat.pdf (506.4Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Although there is widespread recognition of the importance of angiogenesis in tissue repair, there is little work on the inhibition of angiogenesis in the context of tissue engineering of naturally avascular tissues, like articular cartilage. The objective was to engineer a collagen-scaffold-based cartilaginous construct overexpressing a potent antiangiogenic factor, endostatin, using nonviral transfection. Endostatin-plasmid-supplemented collagen scaffolds were seeded with mesenchymal stem cells and chondrocytes and cultured for 20–22 days. The effects of the following variables on endostatin expression and chondrogenesis were examined: collagen scaffold material, method of nonviral vector incorporation, plasmid load, culture medium, and oxygen tension. An increase and peak of endostatin protein was observed during the first week of culture, followed by a decrease to low levels, suggesting that overexpression of endostatin could be sustained for several days using the nonviral vector. The amount of endostatin produced was tunable with the external factors. Chondrogenesis was observed in the engineered constructs cultured in chondrogenic medium at the 3-week time point, demonstrating that endostatin did not inhibit the chondrogenic potential of mesenchymal stem cells or the general viability of the cells. The ability to engineer endostatin-expressing cartilaginous constructs will be of value for future work exercising regulatory control of angiogenesis in cartilage repair.
Date issued
2010-06Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Biological EngineeringJournal
Tissue Engineering. Part A
Publisher
Mary Ann Liebert
Citation
Jeng, Lily, Bjorn R. Olsen, and Myron Spector. “Engineering Endostatin-Producing Cartilaginous Constructs for Cartilage Repair Using Nonviral Transfection of Chondrocyte-Seeded and Mesenchymal-Stem-Cell-Seeded Collagen Scaffolds.” Tissue Engineering Part A 16.10 (2010): 3011-3021. © 2010, Mary Ann Liebert, Inc.
Version: Final published version
ISSN
1937-3341
1937-335X