MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Minimal locked trees

Author(s)
Ballinger, Brad; Charlton, David; Demaine, Erik D.; Demaine, Martin L.; Iacono, John; Liu, Ching-Hao; Poon, Sheung-Hung; ... Show more Show less
Thumbnail
DownloadDemaine_Minimal locked.pdf (359.3Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Locked tree linkages have been known to exist in the plane since 1998, but it is still open whether they have a polynomial-time characterization. This paper examines the properties needed for planar trees to lock, with a focus on finding the smallest locked trees according to different measures of complexity, and suggests some new avenues of research for the problem of algorithmic characterization. First we present a locked linear tree with only eight edges. In contrast, the smallest previous locked tree has 15 edges. We further show minimality by proving that every locked linear tree has at least eight edges. We also show that a six-edge tree can interlock with a four-edge chain, which is the first locking result for individually unlocked trees. Next we present several new examples of locked trees with varying minimality results. Finally, we provide counterexamples to two conjectures of [12], [13] by showing the existence of two new types of locked tree: a locked orthogonal tree (all edges horizontal and vertical) and a locked equilateral tree (all edges unit length).
Date issued
2009-07
URI
http://hdl.handle.net/1721.1/61781
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Algorithms and Data Structures
Publisher
Springer Berlin / Heidelberg
Citation
Ballinger, Brad et al. “Minimal Locked Trees.” Algorithms and Data Structures. Springer Berlin / Heidelberg, 2009. 61-73-73.
Version: Author's final manuscript
ISBN
978-3-642-03366-7

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.