MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

LabelMe: Online image annotation and applications

Author(s)
Torralba, Antonio; Russell, Bryan C.; Yuen, Jenny
Thumbnail
DownloadTorralba_LabelMe online.pdf (3.228Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Central to the development of computer vision systems is the collection and use of annotated images spanning our visual world. Annotations may include information about the identity, spatial extent, and viewpoint of the objects present in a depicted scene. Such a database is useful for the training and evaluation of computer vision systems. Motivated by the availability of images on the Internet, we introduced a web-based annotation tool that allows online users to label objects and their spatial extent in images. To date, we have collected over 400 000 annotations that span a variety of different scene and object classes. In this paper, we show the contents of the database, its growth over time, and statistics of its usage. In addition, we explore and survey applications of the database in the areas of computer vision and computer graphics. Particularly, we show how to extract the real-world 3-D coordinates of images in a variety of scenes using only the user-provided object annotations. The output 3-D information is comparable to the quality produced by a laser range scanner. We also characterize the space of the images in the database by analyzing 1) statistics of the co-occurrence of large objects in the images and 2) the spatial layout of the labeled images.
Date issued
2010-06
URI
http://hdl.handle.net/1721.1/61984
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the IEEE
Publisher
Institute of Electrical and Electronics Engineers
Citation
Torralba, A., B.C. Russell, and J. Yuen. “LabelMe: Online Image Annotation and Applications.” Proceedings Of the IEEE 98.8 (2010) : 1467-1484. Copyright © 2010, IEEE
Version: Final published version
Other identifiers
INSPEC Accession Number: 11416771
ISSN
0018-9219

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.