A Posteriori Error Bounds for the Empirical Interpolation Method
Author(s)
Eftang, Jens L.; Grepl, Martin A.; Patera, Anthony T.
DownloadPatera_A posteriori.pdf (460.0Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Alternative title
A posteriori error bounds for the empirical interpolation method Un estimateur a posteriori d'erreur pour la méthode d'interpolation empirique
Terms of use
Metadata
Show full item recordAbstract
We present rigorous a posteriori error bounds for the Empirical Interpolation Method (EIM). The essential ingredients are (i) analytical upper bounds for the parametric derivatives of the function to be approximated, (ii) the EIM “Lebesgue constant,” and (iii) information concerning the EIM approximation error at a finite set of points in parameter space. The bound is computed “off-line” and is valid over the entire parameter domain; it is thus readily employed in (say) the “on-line” reduced basis context. We present numerical results that confirm the validity of our approach.
Date issued
2010-03Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Comptes Rendus Mathematique
Publisher
Académie des sciences. Published by Elsevier Masson SAS
Citation
Eftang, Jens L., Martin A. Grepl, and Anthony T. Patera. “A Posteriori Error Bounds For the Empirical Interpolation Method.” Comptes Rendus Mathematique 348.9-10 (2010) : 575-579.
Version: Author's final manuscript
ISSN
1631-073X