MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decomposition, approximation, and coloring of odd-minor-free graphs

Author(s)
Demaine, Erik D.; Hajiaghayi, Mohammad Taghi; Kawarabayashi, Ken-ichi
Thumbnail
DownloadDemaine_Decomposition approximation.pdf (288.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We prove two structural decomposition theorems about graphs excluding a fixed odd minor H, and show how these theorems can be used to obtain approximation algorithms for several algorithmic problems in such graphs. Our decomposition results provide new structural insights into odd-H-minor-free graphs, on the one hand generalizing the central structural result from Graph Minor Theory, and on the other hand providing an algorithmic decomposition into two bounded-treewidth graphs, generalizing a similar result for minors. As one example of how these structural results conquer difficult problems, we obtain a polynomial-time 2-approximation for vertex coloring in odd-H-minor-free graphs, improving on the previous O(jV (H)j)-approximation for such graphs and generalizing the previous 2-approximation for H-minor-free graphs. The class of odd-H-minor-free graphs is a vast generalization of the well-studied H-minor-free graph families and includes, for example, all bipartite graphs plus a bounded number of apices. Odd-H-minor-free graphs are particularly interesting from a structural graph theory perspective because they break away from the sparsity of H- minor-free graphs, permitting a quadratic number of edges.
Date issued
2010-01
URI
http://hdl.handle.net/1721.1/62025
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
ACM-SIAM Symposium on Discrete Algorithms
Publisher
Association for Computing Machinery / Society for Industrial and Applied Mathematics
Citation
Demaine, Erik D., Mohammad Taghi Hajiagharyi, Ken-ichi Kawarabayashi. "Decomposition, Approximation, and Coloring of Odd-Minor-Free Graphs" Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, Jan. 2010. 329-344. Copyright © 2010 Society for Industrial and Applied Mathematics.
Version: Author's final manuscript
ISSN
1071-9040

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.