Show simple item record

dc.contributor.authorChiu, Han-Pang
dc.contributor.authorLiu, Huan
dc.contributor.authorKaelbling, Leslie P.
dc.contributor.authorLozano-Perez, Tomas
dc.date.accessioned2011-04-04T15:01:18Z
dc.date.available2011-04-04T15:01:18Z
dc.date.issued2010-12
dc.date.submitted2010-10
dc.identifier.isbn978-1-4244-6674-0
dc.identifier.issn2153-0858
dc.identifier.otherINSPEC Accession Number: 11689223
dc.identifier.urihttp://hdl.handle.net/1721.1/62028
dc.description.abstractOur goal is to grasp 3D objects given a single image, by using prior 3D shape models of object classes. The shape models, defined as a collection of oriented primitive shapes centered at fixed 3D positions, can be learned from a few labeled images for each class. The 3D class model can then be used to estimate the 3D shape of a detected object, including occluded parts, from a single image. The estimated 3D shape is used as to select one of the target grasps for the object. We show that our 3D shape estimation is sufficiently accurate for a robot to successfully grasp the object, even in situations where the part to be grasped is not visible in the input image.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (DARPA) (IPTO Contract FA8750-05-2- 0249)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/IROS.2010.5652597en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIEEEen_US
dc.titleClass-specific grasping of 3D objects from a single 2D imageen_US
dc.typeArticleen_US
dc.identifier.citationHan-Pang Chiu et al. “Class-specific grasping of 3D objects from a single 2D image.” Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on. 2010. 579-585. © Copyright 2010 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverKaelbling, Leslie P.
dc.contributor.mitauthorLiu, Huan
dc.contributor.mitauthorKaelbling, Leslie P.
dc.contributor.mitauthorLozano-Perez, Tomas
dc.relation.journalProceedings fo the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsHan-Pang Chiu; Huan Liu; Kaelbling, Leslie Pack; Lozano-Perez, Tomasen
dc.identifier.orcidhttps://orcid.org/0000-0002-8657-2450
dc.identifier.orcidhttps://orcid.org/0000-0001-6054-7145
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record