MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enabling technologies for self-aware adaptive systems

Author(s)
Santambrogio, Marco Domenico; Hoffmann, Henry Christian; Eastep, Jonathan Michael; Agarwal, Anant
Thumbnail
DownloadAgarwal_Enabling technologies.pdf (168.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Self-aware computer systems will be capable of adapting their behavior and resources thousands of times a second to automatically find the best way to accomplish a given goal despite changing environmental conditions and demands. Such a capability benefits a broad spectrum of computer systems from embedded systems to supercomputers and is particularly useful for meeting power, performance, and resource-metering challenges in mobile computing, cloud computing, multicore computing, adaptive and dynamic compilation environments, and parallel operating systems. Some of the challenges in implementing self-aware systems are a) knowing within the system what the goals of applications are and if they are meeting them, b) deciding what actions to take to help applications meet their goals, and c) developing standard techniques that generalize and can be applied to a broad range of self-aware systems. This work presents our vision for self-aware adaptive systems and proposes enabling technologies to address these three challenges. We describe a framework called Application Heartbeats that provides a general, standardized way for applications to monitor their performance and make that information available to external observers. Then, through a study of a self-optimizing synchronization library called Smartlocks, we demonstrate a powerful technique that systems can use to determine which optimization actions to take. We show that Heartbeats can be applied naturally in the context of reinforcement learning optimization strategies as a reward signal and that, using such a strategy, Smartlocks are able to significantly improve performance of applications on an important emerging class of multicore systems called asymmetric multicores.
Date issued
2010-06
URI
http://hdl.handle.net/1721.1/62151
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
NASA/ESA Conference on Adaptive Hardware and Systems.
Publisher
Institute of Electrical and Electronics Engineers
Citation
Santambrogio, M.D. et al. “Enabling Technologies for Self-aware Adaptive Systems.” Adaptive Hardware and Systems (AHS), 2010 NASA/ESA Conference On. 2010. 149-156. Copyright © 2010, IEEE
Version: Final published version
Other identifiers
INSPEC Accession Number: 11475100
ISBN
978-1-4244-5888-2
978-1-4244-5887-5

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.