Show simple item record

dc.contributor.authorSaez-Rodriguez, Julio
dc.contributor.authorAlexopoulos, Leonidas G.
dc.contributor.authorEpperlein, Jonathan
dc.contributor.authorSamaga, Regina
dc.contributor.authorLauffenburger, Douglas A.
dc.contributor.authorKlamt, Steffen
dc.contributor.authorSorger, Peter K.
dc.date.accessioned2011-04-08T19:44:52Z
dc.date.available2011-04-08T19:44:52Z
dc.date.issued2009-12
dc.date.submitted2009-03
dc.identifier.issn1744-4292
dc.identifier.urihttp://hdl.handle.net/1721.1/62180
dc.description.abstractLarge-scale protein signalling networks are useful for exploring complex biochemical pathways but do not reveal how pathways respond to specific stimuli. Such specificity is critical for understanding disease and designing drugs. Here we describe a computational approach—implemented in the free CNO software—for turning signalling networks into logical models and calibrating the models against experimental data. When a literature-derived network of 82 proteins covering the immediate-early responses of human cells to seven cytokines was modelled, we found that training against experimental data dramatically increased predictive power, despite the crudeness of Boolean approximations, while significantly reducing the number of interactions. Thus, many interactions in literature-derived networks do not appear to be functional in the liver cells from which we collected our data. At the same time, CNO identified several new interactions that improved the match of model to data. Although missing from the starting network, these interactions have literature support. Our approach, therefore, represents a means to generate predictive, cell-type-specific models of mammalian signalling from generic protein signalling networks.en_US
dc.description.sponsorshipGermany. Federal Ministry of Education and Research ('HepatoSys' and the FORSYS-Centre MaCS)en_US
dc.description.sponsorshipNational Institutes of Health. (U.S.) (P50-GM68762)en_US
dc.description.sponsorshipNational Institutes of Health. (U.S.) (U54-CA112967)en_US
dc.language.isoen_US
dc.publisherEMBO and Macmillan Publishers Limiteden_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/msb.2009.87en_US
dc.rightsCreative Commons Attribution-Non-Commercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0en_US
dc.sourceMolecular Systems Biologyen_US
dc.titleDiscrete logic modelling as a means to link protein signalling networks functional analysis of mammalian signal transductionen_US
dc.typeArticleen_US
dc.identifier.citationSaez-Rodriguez, Julio et al. “Discrete Logic Modelling as a Means to Link Protein Signalling Networks with Functional Analysis of Mammalian Signal Transduction.” Mol Syst Biol 5 (2009) : 1-19. © 2009 EMBO and Macmillan Publishers Limited.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.approverLauffenburger, Douglas A.
dc.contributor.mitauthorSaez-Rodriguez, Julio
dc.contributor.mitauthorAlexopoulos, Leonidas G.
dc.contributor.mitauthorLauffenburger, Douglas A.
dc.contributor.mitauthorSorger, Peter K.
dc.relation.journalMolecular Systems Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSaez-Rodriguez, Julio; Alexopoulos, Leonidas G; Epperlein, Jonathan; Samaga, Regina; Lauffenburger, Douglas A; Klamt, Steffen; Sorger, Peter Ken
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record