MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Constrained Consensus and Optimization in Multi-Agent Networks

Author(s)
Nedic, Angelia; Ozdaglar, Asuman E.; Parrilo, Pablo A.
Thumbnail
DownloadNedic-2010-Constrained Consensus and Optimization in Multi-Agent Networks.pdf (606.7Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present distributed algorithms that can be used by multiple agents to align their estimates with a particular value over a network with time-varying connectivity. Our framework is general in that this value can represent a consensus value among multiple agents or an optimal solution of an optimization problem, where the global objective function is a combination of local agent objective functions. Our main focus is on constrained problems where the estimates of each agent are restricted to lie in different convex sets. To highlight the effects of constraints, we first consider a constrained consensus problem and present a distributed "projected consensus algorithm" in which agents combine their local averaging operation with projection on their individual constraint sets. This algorithm can be viewed as a version of an alternating projection method with weights that are varying over time and across agents. We establish convergence and convergence rate results for the projected consensus algorithm. We next study a constrained optimization problem for optimizing the sum of local objective functions of the agents subject to the intersection of their local constraint sets. We present a distributed "projected subgradient algorithm" which involves each agent performing a local averaging operation, taking a subgradient step to minimize its own objective function, and projecting on its constraint set. We show that, with an appropriately selected stepsize rule, the agent estimates generated by this algorithm converge to the same optimal solution for the cases when the weights are constant and equal, and when the weights are time-varying but all agents have the same constraint set.
Date issued
2010-04
URI
http://hdl.handle.net/1721.1/62224
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Transactions on Automatic Control
Publisher
Institute of Electrical and Electronics Engineers
Citation
Nedic, A., A. Ozdaglar, and P.A. Parrilo. “Constrained Consensus and Optimization in Multi-Agent Networks.” Automatic Control, IEEE Transactions on 55.4 (2010): 922-938. © Copyright 2010 IEEE
Version: Final published version
Other identifiers
INSPEC Accession Number: 11208161
ISSN
0018-9286

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.