Show simple item record

dc.contributor.authorDemaine, Erik D.
dc.contributor.authorDemaine, Martin L.
dc.contributor.authorLubiw, Anna
dc.contributor.authorShallit, Arlo
dc.contributor.authorShallit, Jonah L.
dc.date.accessioned2011-04-19T18:52:09Z
dc.date.available2011-04-19T18:52:09Z
dc.date.issued2010-08
dc.identifier.urihttp://hdl.handle.net/1721.1/62237
dc.description.abstractWe explore which polyhedra and polyhedral complexes can be formed by folding up a planar polygonal region and fastening it with one zipper. We call the reverse process a zipper unfolding. A zipper unfolding of a polyhedron is a path cut that unfolds the polyhedron to a planar polygon; in the case of edge cuts, these are Hamiltonian unfoldings as introduced by Shephard in 1975. We show that all Platonic and Archimedean solids have Hamiltonian unfoldings. We give examples of polyhedral complexes that are, and are not, zipper [edge] unfoldable. The positive examples include a polyhedral torus, and two tetrahedra joined at an edge or at a face.en_US
dc.language.isoen_US
dc.publisherUniversity of Manitobaen_US
dc.relation.isversionofhttp://www.cs.umanitoba.ca/~cccg2010/accepted.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleZipper Unfoldings of Polyhedral Complexesen_US
dc.typeArticleen_US
dc.identifier.citationDemaine, Erik D. et al. "Zipper Unfoldings of Polyhedral Complexes." 22nd Canadian Conference on Computational Geometry, CCCG 2010, Winnipeg MB, August 9-11, 2010.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverDemaine, Erik D.
dc.contributor.mitauthorDemaine, Erik D.
dc.contributor.mitauthorDemaine, Martin L.
dc.relation.journalProceedings of the 22nd Canadian Conference on Computational Geometry, 2010, (CCCG 2010)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsDemaine, Erik D.; Demaine, Martin L.; Lubiw, Anna; Shallit, Arlo; Shallit, Jonah L.
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record