MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probabilistic Lane Estimation using Basis Curves

Author(s)
Huang, Albert S.; Teller, Seth
Thumbnail
DownloadTeller_Probabilistic lane.pdf (3.084Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Lane estimation for autonomous driving can be formulated as a curve estimation problem, where local sensor data provides partial and noisy observations of spatial curves. The number of curves to estimate may be initially unknown and many of the observations may be outliers or false detections (due e.g. to to tree shadows or lens flare). The challenges lie in detecting lanes when and where they exist, and updating lane estimates as new observations are made. This paper describes an efficient probabilistic lane estimation algorithm based on a novel curve representation. The key advance is a principled mechanism to describe many similar curves as variations of a single basis curve. Locally observed road paint and curb features are then fused to detect and estimate all nearby travel lanes. The system handles roads with complex geometries and makes no assumptions about the position and orientation of the vehicle with respect to the roadway. We evaluate our algorithm with a ground truth dataset containing manually-labeled, fine-grained lane geometries for vehicle travel in two large and diverse datasets that include more than 300,000 images and 44km of roadway. The results illustrate the capabilities of our algorithm for robust lane estimation in the face of challenging conditions and unknown roadways.
Date issued
2010-06
URI
http://hdl.handle.net/1721.1/62303
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Robotics: Science and Systems (RSS). Proceedings
Publisher
Robotics: Science and Systems (RSS)
Citation
Huang, Albert S., Seth Teller. "Probabilistic Lane Estimation using Basis Curves" Robotics: Science and Systems (6th : 2010 : Zaragoza, Spain).
Version: Author's final manuscript
ISBN
9780262516815
0262516810

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.