Show simple item record

dc.contributor.authorJudd, Tilke M.
dc.contributor.authorEhinger, Krista A.
dc.contributor.authorDurand, Fredo
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2011-04-28T16:00:48Z
dc.date.available2011-04-28T16:00:48Z
dc.date.issued2010-05
dc.date.submitted2009-09
dc.identifier.isbn978-1-4244-4420-5
dc.identifier.issn1550-5499
dc.identifier.otherINSPEC Accession Number: 11367893
dc.identifier.urihttp://hdl.handle.net/1721.1/62546
dc.description.abstractFor many applications in graphics, design, and human computer interaction, it is essential to understand where humans look in a scene. Where eye tracking devices are not a viable option, models of saliency can be used to predict fixation locations. Most saliency approaches are based on bottom-up computation that does not consider top-down image semantics and often does not match actual eye movements. To address this problem, we collected eye tracking data of 15 viewers on 1003 images and use this database as training and testing examples to learn a model of saliency based on low, middle and high-level image features. This large database of eye tracking data is publicly available with this paper.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER award 0447561)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Career award IIS 0747120)en_US
dc.description.sponsorshipAlfred P. Sloan Foundationen_US
dc.description.sponsorshipQuanta Computer (Firm)en_US
dc.description.sponsorshipRoyal Dutch-Shell Groupen_US
dc.description.sponsorshipSingapore-MIT GAMBIT Game Laben_US
dc.description.sponsorshipMicrosoft Research New Faculty Fellowshipen_US
dc.description.sponsorshipXerox Fellowship Programen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICCV.2009.5459462en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIEEEen_US
dc.titleLearning to predict where humans looken_US
dc.typeArticleen_US
dc.identifier.citationJudd, T. et al. “Learning to Predict Where Humans Look.” Computer Vision, 2009 IEEE 12th International Conference On. 2009. 2106-2113.© 2010 IEEE.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverTorralba, Antonio
dc.contributor.mitauthorTorralba, Antonio
dc.contributor.mitauthorJudd, Tilke M.
dc.contributor.mitauthorEhinger, Krista A.
dc.contributor.mitauthorDurand, Fredo
dc.relation.journal2009 IEEE 12th International Conference on Computer Visionen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsJudd, Tilke; Ehinger, Krista; Durand, Fredo; Torralba, Antonioen
dc.identifier.orcidhttps://orcid.org/0000-0001-9919-069X
dc.identifier.orcidhttps://orcid.org/0000-0003-4915-0256
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record