Velocity structure of self-similar spherically collapsed halos
Author(s)
Zukin, Phillip Gregory; Bertschinger, Edmund
DownloadZukin-2010-Velocity structure o.pdf (612.3Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Using a generalized self-similar secondary infall model, which accounts for tidal torques acting on the halo, we analyze the velocity profiles of halos in order to gain intuition for N-body simulation results. We analytically calculate the asymptotic behavior of the internal radial and tangential kinetic energy profiles in different radial regimes. We then numerically compute the velocity anisotropy and pseudo–phase-space density profiles and compare them to recent N-body simulations. For cosmological initial conditions, we find both numerically and analytically that the anisotropy profile asymptotes at small radii to a constant set by model parameters. It rises on intermediate scales as the velocity dispersion becomes more radially dominated and then drops off at radii larger than the virial radius where the radial velocity dispersion vanishes in our model. The pseudo–phase-space density is universal on intermediate and large scales. However, its asymptotic slope on small scales depends on the halo mass and on how mass shells are torqued after turnaround. The results largely confirm N-body simulations but show some differences that are likely due to our assumption of a one-dimensional phase space manifold.
Date issued
2010-11Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Physical Review D
Publisher
American Physical Society
Citation
Zukin, Phillip and Edmund Bertschinger. “Velocity Structure of Self-similar Spherically Collapsed Halos.” Phys. Rev. D 82, 104045 (2010)© 2010 The American Physical Society.
Version: Final published version
ISSN
1550-7998
1550-2368