MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantifying the Consequences of the Ill-Defined Nature of Neutral Surfaces

Author(s)
Klocker, Andreas; McDougall, Trevor J.
Thumbnail
DownloadKlocker-2010-Quantifying the Cons.pdf (9.384Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In the absence of diapycnal mixing processes, fluid parcels move in directions along which they do not encounter buoyant forces. These directions define the local neutral tangent plane. Because of the nonlinear nature of the equation of state of seawater, these neutral tangent planes cannot be connected globally to form a well-defined surface in three-dimensional space; that is, continuous “neutral surfaces” do not exist. This inability to form well-defined neutral surfaces implies that neutral trajectories are helical. Consequently, even in the absence of diapycnal mixing processes, fluid trajectories penetrate through any “density” surface. This process amounts to an extra mechanism that achieves mean vertical advection through any continuous surface such as surfaces of constant potential density or neutral density. That is, the helical nature of neutral trajectories causes this additional diasurface velocity. A water-mass analysis performed with respect to continuous density surfaces will have part of its diapycnal advection due to this diasurface advection process. Hence, this additional diasurface advection should be accounted for when attributing observed water-mass changes to mixing processes. Here, the authors quantify this component of the total diasurface velocity and show that locally it can be the same order of magnitude as diasurface velocities produced by other mixing processes, particularly in the Southern Ocean. The magnitude of this diasurface advection is proportional to the ocean’s neutral helicity, which is observed to be quite small in today’s ocean. The authors also use a perturbation experiment to show that the ocean rapidly readjusts to its present state of small neutral helicity, even if perturbed significantly. Additionally, the authors show how seasonal (rather than spatial) changes in the ocean’s hydrography can generate a similar vertical advection process. This process is described here for the first time; although the vertical advection due to this process is small, it helps to understand water-mass transformation on density surfaces.
Date issued
2010-08
URI
http://hdl.handle.net/1721.1/62596
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of Physical Oceanography
Publisher
American Meteorological Society
Citation
Andreas Klocker, Trevor J. McDougall. "Influence of the Nonlinear Equation of State on Global Estimates of Dianeutral Advection and Diffusion." Journal of Physical Oceanography 40:8, 1690-1709 (2010) © 2010 American Meteorological Society.
Version: Final published version
ISSN
1520-0485
0022-3670

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.