Show simple item record

dc.contributor.authorBarequet, Gill
dc.contributor.authorBenbernou, Nadia M.
dc.contributor.authorCharlton, David
dc.contributor.authorDemaine, Erik D.
dc.contributor.authorDemaine, Martin L.
dc.contributor.authorIshaque, Mashhood
dc.contributor.authorLubiw, Anna
dc.contributor.authorSchulz, Andre
dc.contributor.authorSouvaine, Diane L.
dc.contributor.authorToussaint, Godfried T.
dc.contributor.authorWinslow, Andrew
dc.date.accessioned2011-05-10T15:57:29Z
dc.date.available2011-05-10T15:57:29Z
dc.date.issued2010-08
dc.identifier.urihttp://hdl.handle.net/1721.1/62798
dc.descriptionURL to paper listed on conference siteen_US
dc.description.abstractIn 1994 Grunbaum [2] showed, given a point set S in R3, that it is always possible to construct a polyhedron whose vertices are exactly S. Such a polyhedron is called a polyhedronization of S. Agarwal et al. [1] extended this work in 2008 by showing that a polyhedronization always exists that is decomposable into a union of tetrahedra (tetrahedralizable). In the same work they introduced the notion of a serpentine polyhedronization for which the dual of its tetrahedralization is a chain. In this work we present an algorithm for constructing a serpentine polyhedronization that has vertices with bounded degree of 7, answering an open question by Agarwal et al. [1].en_US
dc.language.isoen_US
dc.publisherUniversity of Manitobaen_US
dc.relation.isversionofhttp://www.cs.umanitoba.ca/~cccg2010/accepted.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleBounded-Degree Polyhedronization of Point Setsen_US
dc.typeArticleen_US
dc.identifier.citationBarequet, Gill et al. "Bounded-Degree Polyhedronization of Point Sets." in Proceedings of the 22nd Canadian Conference on Computational Geometry (CCCG), University of Manitoba, Winnipeg, Manitoba, Canada, August 9 to 11, 2010.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverDemaine, Erik D.
dc.contributor.mitauthorDemaine, Erik D.
dc.contributor.mitauthorBenbernou, Nadia M.
dc.contributor.mitauthorCharlton, David
dc.contributor.mitauthorDemaine, Martin L.
dc.contributor.mitauthorSchulz, Andre
dc.relation.journalProceedings of the 22nd Canadian Conference on Computational Geometry (CCCG 2010)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record