Show simple item record

dc.contributor.authorCudre-Mauroux, Philippe
dc.contributor.authorWu, Eugene
dc.contributor.authorMadden, Samuel R.
dc.date.accessioned2011-05-10T18:09:42Z
dc.date.available2011-05-10T18:09:42Z
dc.date.issued2010-04
dc.date.submitted2010-03
dc.identifier.isbn978-1-4244-5446-4
dc.identifier.isbn978-1-4244-5445-7
dc.identifier.otherINSPEC Accession Number: 11258782
dc.identifier.urihttp://hdl.handle.net/1721.1/62803
dc.description.abstractThe rise of GPS and broadband-speed wireless devices has led to tremendous excitement about a range of applications broadly characterized as "location based services". Current database storage systems, however, are inadequate for manipulating the very large and dynamic spatio-temporal data sets required to support such services. Proposals in the literature either present new indices without discussing how to cluster data, potentially resulting in many disk seeks for lookups of densely packed objects, or use static quadtrees or other partitioning structures, which become rapidly suboptimal as the data or queries evolve. As a result of these performance limitations, we built TrajStore, a dynamic storage system optimized for efficiently retrieving all data in a particular spatiotemporal region. TrajStore maintains an optimal index on the data and dynamically co-locates and compresses spatially and temporally adjacent segments on disk. By letting the storage layer evolve with the index, the system adapts to incoming queries and data and is able to answer most queries via a very limited number of I/Os, even when the queries target regions containing hundreds or thousands of different trajectories.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (IIS-0704424)en_US
dc.description.sponsorshipMicrosoft Research (Jim Gray Seed Grant)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICDE.2010.5447829en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleTrajStore: An Adaptive Storage System for Very Large Trajectory Data Setsen_US
dc.typeArticleen_US
dc.identifier.citationCudre-Mauroux, P., E. Wu, and S. Madden. “TrajStore: An Adaptive Storage System for Very Large Trajectory Data Sets.” Data Engineering (ICDE), 2010 IEEE 26th International Conference On. 2010. 109-120.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverMadden, Samuel R.
dc.contributor.mitauthorCudre-Mauroux, Philippe
dc.contributor.mitauthorWu, Eugene
dc.contributor.mitauthorMadden, Samuel R.
dc.relation.journalIEEE 26th International Conference on Data Engineering (ICDE), 2010en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsCudre-Mauroux, Philippe; Wu, Eugene; Madden, Samuelen
dc.identifier.orcidhttps://orcid.org/0000-0002-7470-3265
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record