MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Computational Complexity of Linear Optics

Author(s)
Aaronson, Scott; Arkhipov, Aleksandr
Thumbnail
DownloadAaronson_The Computational.pdf (807.1Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We give new evidence that quantum computers---moreover, rudimentary quantum computers built entirely out of linear-optical elements---cannot be efficiently simulated by classical computers. In particular, we define a model of computation in which identical photons are generated, sent through a linear-optical network, then nonadaptively measured to count the number of photons in each mode. This model is not known or believed to be universal for quantum computation, and indeed, we discuss the prospects for realizing the model using current technology. On the other hand, we prove that the model is able to solve sampling problems and search problems that are classically intractable under plausible assumptions. Our first result says that, if there exists a polynomial-time classical algorithm that samples from the same probability distribution as a linear-optical network, then P^#P=BPP^NP, and hence the polynomial hierarchy collapses to the third level. Unfortunately, this result assumes an extremely accurate simulation. Our main result suggests that even an approximate or noisy classical simulation would already imply a collapse of the polynomial hierarchy. For this, we need two unproven conjectures: the Permanent-of-Gaussians Conjecture, which says that it is #P-hard to approximate the permanent of a matrix A of independent N(0,1) Gaussian entries, with high probability over A; and the Permanent Anti-Concentration Conjecture, which says that |Per(A)| >= sqrt(n!)/poly(n) with high probability over A. We present evidence for these conjectures, both of which seem interesting even apart from our application. This paper does not assume knowledge of quantum optics. Indeed, part of its goal is to develop the beautiful theory of noninteracting bosons underlying our model, and its connection to the permanent function, in a self-contained way accessible to theoretical computer scientists.
Description
URL to conference site, shows it's an accepted paper
Date issued
2011
URI
http://hdl.handle.net/1721.1/62805
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 43rd annual ACM Symposium on Theory of Computing, (STOC '11)
Publisher
Association for Computing Machinery
Citation
Scott Aaronson and Alex Arkhipov. 2011. The computational complexity of linear optics. In Proceedings of the 43rd annual ACM symposium on Theory of computing (STOC '11). ACM, New York, NY, USA, 333-342.
Version: Author's final manuscript
ISBN
978-1-4503-0691-1

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.