Show simple item record

dc.contributor.authorAbbott, Timothy G.
dc.contributor.authorAbel, Zachary Ryan
dc.contributor.authorCharlton, David
dc.contributor.authorDemaine, Erik D.
dc.contributor.authorDemaine, Martin L.
dc.contributor.authorKominers, Scott Duke
dc.date.accessioned2011-05-10T19:34:53Z
dc.date.available2011-05-10T19:34:53Z
dc.date.issued2012-01
dc.identifier.issn0179-5376
dc.identifier.issn1432-0444
dc.identifier.urihttp://hdl.handle.net/1721.1/62808
dc.description.abstractWe prove that any finite collection of polygons of equal area has a common hinged dissection. That is, for any such collection of polygons there exists a chain of polygons hinged at vertices that can be folded in the plane continuously without self-intersection to form any polygon in the collection. This result settles the open problem about the existence of hinged dissections between pairs of polygons that goes back implicitly to 1864 and has been studied extensively in the past ten years. Our result generalizes and indeed builds upon the result from 1814 that polygons have common dissections (without hinges). Our proofs are constructive, giving explicit algorithms in all cases. For two planar polygons whose vertices lie on a rational grid, both the number of pieces and the running time required by our construction are pseudopolynomial. This bound is the best possible, even for unhinged dissections. Hinged dissections have possible applications to reconfigurable robotics, programmable matter, and nanomanufacturing.en_US
dc.description.sponsorshipMassachusetts Institute of Technology/Akamai Presidential Fellowshipen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Graduate Research Fellowship)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00454-010-9305-9
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleHinged Dissections Existen_US
dc.typeArticleen_US
dc.identifier.citationAbbott, Timothy G. et al. "Hinged Dissections Exist." Discrete & Computational Geometry, 47.1 (2012, p.150-186.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverDemaine, Erik D.
dc.contributor.mitauthorDemaine, Erik D.
dc.contributor.mitauthorAbbott, Timothy G.
dc.contributor.mitauthorDemaine, Martin L.
dc.contributor.mitauthorAbel, Zachary Ryan
dc.relation.journalDiscrete and Computational Geometryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAbbott, Timothy G.; Abel, Zachary; Charlton, David; Demaine, Erik D.; Demaine, Martin L.; Kominers, Scott Duke
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
dc.identifier.orcidhttps://orcid.org/0000-0002-4295-1117
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record