MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A data-driven approach for even prediction

Author(s)
Yuen, Jenny; Torralba, Antonio
Thumbnail
DownloadTorralba_A data.pdf (10.78Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
When given a single static picture, humans can not only interpret the instantaneous content captured by the image, but also they are able to infer the chain of dynamic events that are likely to happen in the near future. Similarly, when a human observes a short video, it is easy to decide if the event taking place in the video is normal or unexpected, even if the video depicts a an unfamiliar place for the viewer. This is in contrast with work in surveillance and outlier event detection, where the models rely on thousands of hours of video recorded at a single place in order to identify what constitutes an unusual event. In this work we present a simple method to identify videos with unusual events in a large collection of short video clips. The algorithm is inspired by recent approaches in computer vision that rely on large databases. In this work we show how, relying on large collections of videos, we can retrieve other videos similar to the query to build a simple model of the distribution of expected motions for the query. Consequently, the model can evaluate how unusual is the video as well as make event predictions. We show how a very simple retrieval model is able to provide reliable results.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/62829
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
ECCV'10 Proceedings of the 11th European Conference on Computer Vision: Part II
Publisher
Springer-Verlag
Citation
Yuen, Jenny, and Antonio Torralba. “A data-driven approach for event prediction.” Proceedings of the 11th European Conference on Computer Vision: Part II. Heraklion, Crete, Greece: Springer-Verlag, 2010. 707-720.
Version: Author's final manuscript
ISBN
978-3-642-15551-2

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.