Show simple item record

dc.contributor.authorShah, Devavrat
dc.contributor.authorZhong, Yuan
dc.contributor.authorTsitsiklis, John N
dc.date.accessioned2011-05-20T21:24:35Z
dc.date.available2011-05-20T21:24:35Z
dc.date.issued2010-06
dc.identifier.urihttp://hdl.handle.net/1721.1/62864
dc.description.abstractWe consider a switched network, a fairly general constrained queueing network model that has been used successfully to model the detailed packet-level dynamics in communication networks, such as input-queued switches and wireless networks. The main operational issue in this model is that of deciding which queues to serve, subject to certain constraints. In this paper, we study qualitative performance properties of the well known α-weighted [alpha weighted] scheduling policies. The stability, in the sense of positive recurrence, of these policies has been well understood. We establish exponential upper bounds on the tail of the steady-state distribution of the backlog. Along the way, we prove finiteness of the expected steady-state backlog when α < 1 [alpha < 1], a property that was known only for α ≥ 1 [alpha ≥ 1]. Finally, we analyze the excursions of the maximum backlog over a finite time horizon for α ≥ 1 [alpha ≥ 1]. As a consequence, for α ≥ 1 [alpha ≥ 1], we establish the full state space collapse property [17, 18].en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Project CCF 0728554)en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/1811039.1811067en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleQualitative properties of α-weighted scheduling policiesen_US
dc.title.alternativeQualitative properties of α-weighted [alpha weighted] scheduling policiesen_US
dc.typeArticleen_US
dc.identifier.citationShah, Devavrat, John N. Tsitsiklis, and Yuan Zhong. “Qualitative properties of α-weighted scheduling policies.” ACM SIGMETRICS Performance Evaluation Review 38.1 (2010) : 239. Copyright 2010 ACMen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.approverTsitsiklis, John N.
dc.contributor.mitauthorShah, Devavrat
dc.contributor.mitauthorTsitsiklis, John N.
dc.contributor.mitauthorZhong, Yuan
dc.relation.journalInternational Conference on Measurement and Modeling of Computer Systems (2010). ACM SIGMETRICSen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsShah, Devavrat; Tsitsiklis, John N.; Zhong, Yuanen
dc.identifier.orcidhttps://orcid.org/0000-0003-0737-3259
dc.identifier.orcidhttps://orcid.org/0000-0003-2658-8239
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record