Tree block coordinate descent for map in graphical models
Author(s)
Sontag, David Alexander; Jaakkola, Tommi S.
DownloadJaakkola_Tree block.pdf (284.0Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
A number of linear programming relaxations have been proposed for finding most likely settings of the variables (MAP) in large probabilistic models. The relaxations are often succinctly expressed in the dual and reduce to different types of reparameterizations of the original model. The dual objectives are typically solved by performing local block coordinate descent steps. In this work, we show how to perform block coordinate descent on spanning trees of the graphical model. We also show how all of the earlier dual algorithms are related to each other, giving transformations from one type of reparameterization to another while maintaining monotonicity relative to a common objective function. Finally, we quantify when the MAP solution can and cannot be decoded directly from the dual LP relaxation.
Description
abstract URL: http://jmlr.csail.mit.edu/proceedings/papers/v5/sontag09a.html
Date issued
2009-04Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Proceedings of the 12th International Conference on Artifcial Intelligence and Statistics (AISTATS) 2009
Publisher
Journal of Machine Learning Research
Citation
"Tree block coordinate descent for map in graphical models." Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics
April 16-18, 2009, Clearwater Beach, Florida USA.
Version: Author's final manuscript