Show simple item record

dc.contributor.authorKhot, Subhash
dc.contributor.authorMoshkovitz Aaronson, Dana Hadar
dc.date.accessioned2011-05-31T19:48:28Z
dc.date.available2011-05-31T19:48:28Z
dc.date.issued2011-06
dc.identifier.urihttp://hdl.handle.net/1721.1/63152
dc.descriptionURL lists article on conference siteen_US
dc.description.abstractIn this paper, we consider the problem of approximately solving a system of homogeneous linear equations over reals, where each equation contains at most three variables. Since the all-zero assignment always satisfies all the equations exactly, we restrict the assignments to be “non-trivial”. Here is an informal statement of our result: it is NP-hard to distinguish whether there is a non-trivial assignment that satisfies $1-\delta$ fraction of the equations or every non-trivial assignment fails to satisfy a constant fraction of the equations with a ``margin" of $\Omega(\sqrt{\delta})$. We develop linearity and dictatorship testing procedures for functions f : Rn 7--> R over a Gaussian space, which could be of independent interest. We believe that studying the complexity of linear equations over reals, apart from being a natural pursuit, can lead to progress on the Unique Games Conjecture.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF CAREER grant CCF-0833228)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Expeditions grant CCF-0832795)en_US
dc.description.sponsorshipU.S.-Israel Binational Science Foundation (BSF grant 2008059)en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/1993636.1993692en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleNP-Hardness of Approximately Solving Linear Equations Over Realsen_US
dc.typeArticleen_US
dc.identifier.citationKhot, Subhash and Dana Moshkovitz. "NP-Hardness of Approximately Solving Linear Equations Over Reals." Proceedings of the 43rd ACM Symposium on Theory of Computing, ACM STOC 2011, June 6-8, San Jose, California.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverMoshkovitz Aaronson, Dana Hadar
dc.contributor.mitauthorMoshkovitz Aaronson, Dana Hadar
dc.relation.journalProceedings of the 43rd ACM Symposium on Theory of Computing, ACM STOC 2011en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsKhot, Subhash; Moshkovitz, Dana
dc.identifier.orcidhttps://orcid.org/0000-0002-5157-8086
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record