MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficiently decodable non-adaptive group testing

Author(s)
Indyk, Piotr; Ngo, Hung Q.; Rudra, Atri
Thumbnail
DownloadIndyk_Efficiently decodable.pdf (310.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We consider the following "efficiently decodable" non-adaptive group testing problem. There is an unknown string x 2 f0; 1gn [x is an element of set {0,1} superscript n] with at most d ones in it. We are allowed to test any subset S [n] [S subset [n] ]of the indices. The answer to the test tells whether xi = 0 [x subscript i = 0] for all i 2 S [i is an element of S] or not. The objective is to design as few tests as possible (say, t tests) such that x can be identifi ed as fast as possible (say, poly(t)-time). Efficiently decodable non-adaptive group testing has applications in many areas, including data stream algorithms and data forensics. A non-adaptive group testing strategy can be represented by a t x n matrix, which is the stacking of all the characteristic vectors of the tests. It is well-known that if this matrix is d-disjunct, then any test outcome corresponds uniquely to an unknown input string. Furthermore, we know how to construct d-disjunct matrices with t = O(d2 [d superscript 2] log n) efficiently. However, these matrices so far only allow for a "decoding" time of O(nt), which can be exponentially larger than poly(t) for relatively small values of d. This paper presents a randomness efficient construction of d-disjunct matrices with t = O(d2 [d superscript 2] log n) that can be decoded in time poly(d) [function composed of] t log2 t + O(t2) [t log superscript 2 t and O (t superscript 2)]. To the best of our knowledge, this is the first result that achieves an efficient decoding time and matches the best known O(d2 log n) [O (d superscript 2 log n)] bound on the number of tests. We also derandomize the construction, which results in a polynomial time deterministic construction of such matrices when d = O(log n= log log n). A crucial building block in our construction is the notion of (d,l)-list disjunct matrices, which represent the more general "list group testing" problem whose goal is to output less than d + l positions in x, including all the (at most d) positions that have a one in them. List disjunct matrices turn out to be interesting objects in their own right and were also considered independently by [Cheraghchi, FCT 2009]. We present connections between list disjunct matrices, expanders, dispersers and disjunct matrices. List disjunct matrices have applications in constructing (d,l)- sparsity separator structures [Ganguly, ISAAC 2008] and in constructing tolerant testers for Reed-Solomon codes in the data stream model. 1 Introduction
Date issued
2010-01
URI
http://hdl.handle.net/1721.1/63167
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
ACM-SIAM Symposium on Discrete Algorithms (SODA). Proceedings, 21st, 2010
Publisher
Society for Industrial and Applied Mathematics / Association for Computing Machinery
Citation
Indyk, Piotr, Hung Q. Ngo and Atri Rudra. "Efficiently Decodable Non-adaptive Group Testing" ACM-SIAM Symposium on Discrete Algorithms, 21st, January 17-19, 2010 Hyatt Regency Austin, Austin, Texas.
Version: Author's final manuscript
ISSN
1071-9040

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.