Show simple item record

dc.contributor.authorKaraman, Sertac
dc.contributor.authorWalter, Matthew R.
dc.contributor.authorPerez, Alejandro
dc.contributor.authorFrazzoli, Emilio
dc.contributor.authorTeller, Seth
dc.date.accessioned2011-06-02T17:41:24Z
dc.date.available2011-06-02T17:41:24Z
dc.date.issued2011-05
dc.identifier.issn2152-4092
dc.identifier.urihttp://hdl.handle.net/1721.1/63170
dc.description.abstractThe Rapidly-exploring Random Tree (RRT) algorithm, based on incremental sampling, efficiently computes motion plans. Although the RRT algorithm quickly produces candidate feasible solutions, it tends to converge to a solution that is far from optimal. Practical applications favor “anytime” algorithms that quickly identify an initial feasible plan, then, given more computation time available during plan execution, improve the plan toward an optimal solution. This paper describes an anytime algorithm based on the RRT* which (like the RRT) finds an initial feasible solution quickly, but (unlike the RRT) almost surely converges to an optimal solution. We present two key extensions to the RRT*, committed trajectories and branch-and-bound tree adaptation, that together enable the algorithm to make more efficient use of computation time online, resulting in an anytime algorithm for real-time implementation. We evaluate the method using a series of Monte Carlo runs in a high-fidelity simulation environment, and compare the operation of the RRT and RRT* methods. We also demonstrate experimental results for an outdoor wheeled robotic vehicle.en_US
dc.description.sponsorshipUnited States. Army. Logistics Innovation Agencyen_US
dc.description.sponsorshipUnited States. Army Combined Arms Support Commanden_US
dc.description.sponsorshipUnited States. Dept. of the Air Force (Air Force Contract FA8721-05-C-0002)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttps://ras.papercept.net/conferences/scripts/abstract.pl?ConfID=34&Number=1887en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleAnytime Motion Planning using the RRT*en_US
dc.typeArticleen_US
dc.identifier.citationKaraman, Sertac et al. "Anytime Motion Planning using the RRT*." 2011 IEEE International Conference on Robotics and Automation (ICRA) May 9-13, 2011, Shanghai International Conference Center, Shanghai, China.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.approverTeller, Seth
dc.contributor.mitauthorKaraman, Sertac
dc.contributor.mitauthorWalter, Matthew R.
dc.contributor.mitauthorFrazzoli, Emilio
dc.contributor.mitauthorTeller, Seth
dc.relation.journalIEEE International Conference on Robotics and Automation. ICRA 2011en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsKaraman, Sertac; Walter, Matthew R.; Perez, Alejandro; Frazzoli, Emilio; Teller, Seth
dc.identifier.orcidhttps://orcid.org/0000-0002-0505-1400
dc.identifier.orcidhttps://orcid.org/0000-0002-2225-7275
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record